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Summary

Each item of work described in this report was paid for, in whole or in part,
by the present contract. There are four items. The first item is about nonlinear mi-
crowave amplification. The second item is about speeds of frequency co.mponents of
electromagnetic pulses, and a related inversion method. The third item is about an

.

inversion method for depth-dependent dispersive media, which uses electromagnetic
pulses. The fourth item is about general rules of pulse propagation in dispersive
media, with applications to inversion.

Some of the work was done jointly with others or with some help from others.
I will now list these people and identify those who work in San Antonio. For the first
item I would like to thank Gary Thomas who told me about an error in an equation
and its correction. A project with the Naval Weapons Support Center required
rederivations done in this first work item. The second item was done jointly ‘with
Mike Hobart. Some computer programs came from Robert Krueger and Ronald
Winther, and I am grateful for conversations about error bars with Phelps Crump,
who is a defense contractor working in San Antonio. The fourth item was done
jointly with Peter Petropoulos while he was employed by Optech, and Fred German
allowed us to use his finite-difference program.

This sum.mary concludes witl} a brief, item-by-item description of the re-

mainder of this report.




Comment on a Paper’s Nonlinear-Amplification Model

The paper commented on is significant because its claims of laboratory success
have motivated further use of nonlinear Schrédinger equations to model amplifiers.
Some of the paper’s inaccurate equations are corrected here, and others identified.

Questions are also raised about the claims of success in the laboratory.

Speeds and Inversion

Our numerical computation of precursors shows that damping increases the speed
of frequency components to a degree that is consistent with energy velocity. The
speed-up here is slight, and a medium that has been called “highly absorptive”
exhibits no speed-up. These small effects lead us to question the extént to which
energy velocity would be more useful than group velocity in the laboratory. We also
introduce an especially simple method for measuring permittivity. The method is
useful when damping affects wave speed no more than slightly, as happens in all |

numerical simulations cited or reported here.

Inversion Method for Depth-dependent Dispersive Media

This item describes an inverse scattering algorithm for ‘electromagneticaﬂy disper-
sive objects that are flat, and whose properties vary only with depth. Tissue and
soil are discretely layered examples of such media, but this paper’s algorithm also
applies to dispersive media that are continuously layered. The inversion allgorithm
uses time-dependent reflection data as a function of the angle of incidence. These

data are represented by a function of two variables R?(t). A count of the variables



suggests that the data RP(t) should be sufficient to determine the two-variable
function g(z,t) that represents depth-dependent dispersion. A time-domain layer
stripping method that uses wave splitting and Krueger-Ochs Green functions is

presented.

Propagation and Related Topics, Including Inversion
.

We develop some new methods for describing pulse propagation for general disper-
sive media, using a Debye model for water as an example. Short-pulse, long-pulse,
short-time, and long-time approximations are presented. We explain a factor-of-
nine effect in the speed of waves in water, which seems to have been previously
unnoticed. We also study the following problem: Knowing only the peak amplitude
and power density of an incident pulse, what can be said about the peak amplitude
of the propagated pulse?. We provide sharp upper bounds for the propagated am-
plitude and reduce the computation of those bounds to a calculator exercise. These

bounds may be useful in controlling the electromagnetic interference or damage

produced in dispersive media.



Comment on a Paper’s'Nonlinear-Ampliﬁcation Model

Continued citation of Gary E. Thomas’s paper [1] makes comment worth-

while. In this comment, the numbers of equations, figures, tables, and sections are

of those in {1].

Equations

This section identifies twelve inaccurate equations in {1}, which are corrected
here or proven inaccurate. The inaccurate equations are (10a), (10b), (11)-(13),
(15a), (15b), (21), the first two unnumbered equations that follow (15b), and two
of the equations between (33) and (34). The signs of the paper’s functions Jy, —Bo,

and —C, affect the accuracy of (34) and the equation for 7 that is between (33)
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and (34). Those two equations are replaced here by ones that are valid regardless

of the signs of J1, — By, and —C.

Each equation in the following list corrects a corresponding equation in (1],

or is used immediately below to correct a larger concept.

E = Asech[A(z — u.t)/ V2] explive(z — uct)/2] |
p
E = Btanh[B(z + uct)/v2] expliu.(z + uct)/2)
87 f + 6(sech?€) f — (1 — 2k; /A®)f = +2vg/A®
2g +2(sech?é)g — (1 — 2k2/A%)g ~ —2vf/4}
£ = Az - ut)/V2
K?=2k/A? and T = 2v/A?
Ue = Uc = m
10D, E + b02E+cOE + J|E[*E =0
;= —2wDy b=-2Bgk2 c¢=Co J=0
r=t|J/a| ¢ =z/]J/4] ¢ =z/1J/el
sign(a/J) = 1

i8, E + [sign(b/J))8; E+][sign(c/J)|0 E + |EI*E =0

(10a)
(108)
(15a)
(153)
(15¢)
(15d)

(21)
(33a)
(33b)
(33¢)
(33d)

(34)

In (10a): A, u., and u. are real-valued.constants that satisfy u.(2uc —u.) =

24? and u(ue — 2uc) > 0. In (10b): B, u., and u. are new real-valued constants

that satisfy u.(2uc — u.) = 2B? and ue(2ﬁc —ue) > 0.



Table I and Fig. 3 are from [1, Ref. 8] —which is the éighth reference in [1]—
provided (15d) replaces similar equations in (1], and provided {1, Ref. 8] uses, in its
notation, N? = 1. Reference [1] does not say whether [1, Ref. 8] uses N? = 1.

Equations (33)—(34) correct a corresponding set of equations in [1] only if a,
b, ¢, and J are real valued and independent of the real variables ¢, z, and z. Equation
(33d) is not in [1]; the equation comes from [2]. There are no more corrections.

Equation (11.) is false because it and definition (9) have identical right sides,
though the left sides have different units. Equation (11) is not from [1, Ref. 7}, nor
does (11), (12), or (13) follow from direct application of [1, Ref. 7]. The right sides
of (9), (12), and (13) have identical units, though the units of th; left sides of (12)
and (13) differ from the units of the left side of definition (9). That is, (11)—(13)
have errors. Those equations are a foundation for the paper’s predictions about
power.

Some work reported after publication of [1] relates to foundational equz;tions
mentioned in the previous paragraph. In particular, much of (8)-(13) concerns
the energy-like term (9), which is said to be conserved for a nonlinear Schradinger
equation with one spacial variable, and to be unconserved for spacial dimension
two. Later work [3] shows that i0,FE + 82E + 62E + |E|’E = 0 implies that the
different energy-like term [[dzdz(|0-E|* + |5,E'|2.— |E|*/2) is conserved and the
term [fdzdz|E|?, which is proportional to an integral of the right side of (13), also
is conserved.

This section has identified twelve inaccurate equations and corrected most of

them. The focus has been on equations themselves, not their relevance in modeling

amplifiers. The strongest argument in [1] for the relevance of its equations is that
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they are said to make predictions that are validated experimentally. However,
the degree to which this comment’s corrections would affect those predictions is
unknown because [1] omits numerical values of some important variables. (The
variables are used in (36)-(38) and (44) to define apparently significant signs of
coefficients in a nonlinear Schrédinger equation (33).) That is, predictions in [1] are
questionable because of errors, but the magnitude of the errors is unknown because

the predictions are not reproducible.

Experimental Validation

The model in [1] was derived nonrigorously, so its scientific relevance is based
on claims of experimental validation. The paper says that predictions and experi-
ments agree closely, so if the numerical effect of errors in {1] is large, then there is no
need to examine 1] further. However, if the errors affect predictions only slightly,
then the scientific relevance of [1] relies on‘ claims that (lawed) predictions agree
with experiments. This section examines all such claims of experimental validation.

Figure 10 and Tables II and III contain all the experimental data in [1],
and Table-II is illustrated in Figs. 6 and 7. Every claim of experimental validation
naturally refers to those data. The claims are in the second and third paragraphs
of Section V, and in the fourth and fifth paragraphs of Section VI. We will examine
claims in that order.

The claims of experimental validation that concern Tables II and III are
affected by “transition shifts.” The shifts change numerical predictions. Shifts are
explained qualitatively in [1], but their numerical values are unexplained. One shift

in Fig. 4 changes a prediction by an unexplained 32%.
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Let us examine at length a single prediction. Section V predicts an increase
in ‘the slope of a graph at the voltage 0.63Vy, which is shifted by 17% to 0.74Vy
in Fig. 4. The text says that experimental data have an increasing slope at the
nearby voltage 0.79Vy, and Fig. 7 is cited. Linear interpolation is used in every
interval of Fig. 7, except for one that has an unexplained, nonlinear interpolation.
The initial slope of the nonlinear interpolation is chosen to agree with the predicted

.
increase; yet the slope decreases to the right of 0.79Vy, and throughout the interval.
Fig. 6, which has the same data as Fig. 7, illustrates the decreasiné slope more
plainly. Thus, two graphs contradict a predicted increase in slope, while the text
claims close agreement. In another matter concerning the same prediction, a table
does not distinguish experiment from theory. In particular, the voltage 0.79Vy
comes from analysis of gxperimental data, but Table II portrays that voltage as a
prediction. A larger set of related data also does not clearly establish that theory
and exberimefxt agree. For instance, a 7.2kV “predicted value” is placed in the
same row of Table II as a 7.2kV applied voltage, a —13.7dBm power, a 240.0 degree
phase shift, and a 0.02A current; but the relation of the 7.2kV prediction to any of
the four measurements in its row is unexplained. Is the unexplained placement of
a 7.2kV prediction meant to support the text’s claim that theory and experiment
agree? Does that placement rely on the extraordinary interpolation technique that
earlier produced two contradictions? Those questions can be repeated for the other
predictions in Table II, which are also affected by shifts. Questions have now been
raised about the claims of experimental validation that refer to Table II. Those

claims are in the second paragraph of Section V.



Only one claim of experimental validation (1, page 32] mentions Table III.
The claim refers to a voltage 1.13Vy, which is shifted twice: first by 8% to 1.22Vy;
second, by an unmentioned quantity whose sign might be implied by the text,
which says, “For a forward-wave CFA, negative phase velocity effects increase with
increasing frequency.” This doubly-shifted, indeterminate voltage is said to explain
a feature in Table III. The resulting claim of experimental validation is unconvincing
because the numeri.cal value of the first shift is unexplained and the numerical value
of the second shift is unmentioned.

Questions have now been raised about the claims of experimental validation
that concern Tables II and III. All validation claims will have been examined once
we consider those that refer to Fig. 10. The claims about Fig. 10 are in the fourth
and fifth paragraphs of Section V. The subject is phase shifts.

Phase predictions in (23) are affected by an error in (21), which is corrected in
the previous section of this comment. It is not clear whether corrected predictions
’would agree with the data presented. The paper says, “phase shifts are scaled
according to power output,” but the paper does not further define a scaling formula
with which the variable A in (21) could be replaced by the power graphed in Fig. 6.
A scaling formula would allow the phase in (23) to be graphed, but the paper offers
only qualitative analysis and sketches. Scaling, which is not fully explained, is a
crucial part of claims that qualitative analysis and data agree closely.' Here and
in the case of transition shifts, experimental validation relies on the accuracy of

incompletely-reported work.



Conclusion

Reference [1] apparently is the first paper to use a nonlinear Schrédinger
equation to describe microwave amplifiers. The model in [1] is is not rigorously de-
rived; instead, the model’s relation to amplifiers is based on claims that predictions
and experiments agree closely. Those claims have motivated other papers that use
similar nonlinear models.

This commez:t has examined some equations that underly predictions, and
it has reviewed all claims of experimental validation. Questions have been raised
about both the equations and the claims of validation.

Although no attempt has been made to re-derive every eq\;ation in [1], most
of the twelve known inaccurate equations in [1] have been corrected here. The
effect of corrections on numerical predictions in [1} is unknown because the values
of some critical parametérs are omitted from [1]. Another fundamental concern is
the paper’s development of an energy-like term (9). That development is flawed
and uncorrected, yet it is a foundation for predictions about an amplifier’s power.

The effect of errors on numerical predictions in [1} has unknown magnitude,
'so it is possible that the effect is small. In that case, claims of éxperimental valida-
" tion are crucial because they are the only connection between [1] and the amplifiers

it models. Most of those claims involve “transition shifts,”

which are large changes
in predictions. The numerical values of shifts are unexplained, but not every pre-
diction is shifted: all unshifted predictions are “scaled” in a way that is also not

fully explained. Shifts and scalings are both documented incompletely, and they

both bring predictions into closer agreement with experiments. The paper’s most



prominent claim—the subject of Fig. 7—relies on both an unexplained 17% shift

and an extraordinarily questionable interpolation.

In summary, several papers have been motivated by the development in [1]
of a nonlinear-Schrédinger-equation (NLS) model. If the numerical effect of twelve
inaccurate equations in [1] is not too large, then the argument for an NLS model

relies on shifts, scalings, and questionable interpolations. The shifts and scalings
e

* will not be reproducible unless [1] is further documented.

References

[1] Gary E. Thomas, “The Nonlinear Operation of a Microwave Crossed-Field
Amplifier,” IEEE Transactions on Electron Devices, vol. ED-28, no. 1, pp. 27-
36, January 1981. .

[2] Gary E. Thomas, “Solitons and non-linear gyro-TWT theory,” Int. J. Elec-

tronics, vol. 51, no. 4, pp. 395413, October 1981.

[3] Mark J. Ablowitz and Harvey Segur, Solitons and the Inverse Scattering
Transform. Philadelphia: SIAM, 1981, p. 258. Let A = E/+/2 in (3.8.46)
and (3.8.47).

[4] Thomas M. Roberts and Harold A. Sabbagh, “Review of Nonlinear Analysis
for Crossed-Field Amplifiers,” final report to Naval Weapons Support Center,

Code 80312, Crane, Indiana, 47533, 20 January 1989.



Speeds and Inversion
1. INTRODUCTION
There are several velocities of light,!'? among which group and energy velocity
predict most successfully the speeds of a pulse’s frequency components. This
paper compares those group- and energy-velocity predictions, and says that two
predictioﬁs differ significantly only if there is numerical evidence that the difference
could be noticed in a laboratory. A simple method for measuring permittivity is

. also examined from 4n empirical point of view, and is found to be useful in some

cases.
Group velocity vy = dw/dk (with k = wy/e/c) is often used for undamped
media, but is widely considered useless for damped media.!** First, we assert

5—8»

to the contrary that waves computed® for a “highly absorptive medium and

reported in this journal are desc':ribed with equal accuracy by group and energy
velocity. That is, damping negligibly affects the speed of frequency components in
Ref. 5. Second, we report simulations in which damping increases speed noticeably,
though slightly. Our experience of finding several media in which damping negligibly
affects speed (before ﬁﬁding the exceptiona.l media reported here) is more anecdotal
evidence that the effect of damping on wave speed is slight. Third, we observe

that precursors in waves computed for a Debye medium and reported in this journal®
are also consistent with a hypothesis that damping affects wave speed slightly.

We view those three observations as the first numerical tests of the empxncal
usefulness of energy velocity. The tests are reviewed after equation (3), and in
Sections 4 and 5. We conclude that there is no numerical evidence that energy
velocity could be much better than group velocity at predicting speeds of frequency

components that are observable in a laboratory. However, the available numerical
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tests are not exhaustive, and the tests reported here tend to improve the stature
of energy velocity.

Finally, we use wave speed in an elementary technique for inferring permittivity
from transmitted waves. The technique is truly elementary: It is not mathematically
advanced; indeed, we prove limitations. The elementary technique is worthwhile
because it is simple, and potentially useful in some cases.

This paper is'ma.inly about Lorentz media, which appear to be the only
damped media for which energy velocity has been calculated explicitly.®'!° Lorentz
media are defined!® by the Maxwell equations, VXE = —0;B and VxH = §,D,

and by the constitutive relations B = poH and

D(t) = E(t) + /0 ~ dsg(s)E(t - s)

g(t) = w:e"s‘u"1 sin vt.

The media are parameterized by a plasma frequency w;, a damping constant 4,

and a natural frequency v. In the frequency domain, D(w) = e(w)E(w) and

e(w) = 1 = wl/(w? — w} + 2idw) (2)

with w, = v/22 + 32. Media with electric dipoles of strength w? that oscillate with

damping § and resonant frequency w; as # + 2§ + w?z = constant x ™! are
"Lorentz media'! in the sense of (1) and (2). The frequency components of pulses

in-Lorentz media travel at the energy velocity®
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ve = c[(Rek) + w(Imk)/8] ™} k = Rek + ilmk = w /e /c (3)

which generalizes group velocity in the sense that® v = vg as § = 0.

Cqmpa.risons of group and energy velocity (Section 5) may be the parts of
this paper that have the most general interest. Figures 1 and 2 illustrate one such
comparison of vg and ve, and the comparison also relies on Ref. 5 That paper
computes precursors for a Lorentz medium (2) whose parameters (wp, w;, §) are
on the order of 10'®/sec. For one computed precursor, the instantaneous frequency
Winst Was measured at 60 different instants. (Notice that measurelment here refers
to a numerical simulation, got a laboratory experiment.) The measurements are
graphed in Fig. 6 of Ref. 5, and some of that graph’s features are sketched here.
All 60 measurements lie in the outer dashed regions of Figs. 1 and 2.

Figure 1 shows that v, for the medium (wp, w:, §) of Ref. 5 and v for
a medium (wp, w;, 0 )—which has the same w;, and w;, but has § = 0—differ
considerably over only 5-10% of the frequency range for which Ref. 5 has measurements;
but no frequency measurement actually lies in that narrow (5-10%) range. In
the complementary region, where v, and v, are approximately equal, Fig. 6 of
Rf:f. 5 has six unusual measurements that seem, at first, to be incon.sistcnt with

both v, and vg; but those six frequency measurements are unreliable® for reasons

* The six measurements that are unreliable for our purposes are useful in the
context of Ref. 5. That paper says correctly that the zigzags, or oscillations, in
the graph of the six measurements are caused by interference of Sommerfeld (high

frequency) and Brillouin (low frequency) parts of a precursor. The paper then
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Fig. 1. Precursor measurements in Ref. 5 are equally
~ well described by v, for (wp, wr, §) and vg for (wp, we, 0).
Group and energy velocity differ significantly near the

stop band (4x10%¢/sec, 6x10'®/sec), but instantaneous

frequency was not measured there.
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Fig. 2. Detail from Fig. 1. Group and energy velocity
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contrast, many measurements in Fig. 6 of Ref. 5 deviate
from theoretical curves by the width of a few pen

strokes, owing to small measurement errors.
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described here in Section 5, in a discussion of “zigzags” and multiple-valued speeds.
The other 54 measurements in Fig. 6 of Ref. § are reliable and are equally well
described by vg and v.. Figure 2 shows the high degree of accuracy with which

v, for (wp, we, §) and vg for (wp, w;, 0) agree over the (dashed) range of reliable
measurements. This paragraph and the one previous explain our earlier statement
that waves computed for one highly absorptive medium are described with equal
accuracy by group a.nd energy velocity. Section 5 compares vz and v, further.

The oscillator that underlies the Lorentz medium studied in Ref. 5§ has a
natural frequency v that differs from the resonant frequency w, by 0.25%. That
small difference accounts for the similar values of vg and v, in Flg 2. Increasing
the damping § would broaden the frequency range over which v, for (wp, wr, §) |
and v, for (wp, w;, 0) differ significantly; but, in a competing effect, a larger damping
would also severely attenuate a broader range of frequency components. With
those competing effects in mind, we searched for Lorentz media in which v; and
ve would differ significantly for some frequency components that could be observed
and measured. Our best results—for which the differences between vg and v, are
the greatest we have seen—are in Section 3. The section describes what appears
to be the first evidence that damping affects speed noticeably, though the effect
is slight. Section 4 identifies a similar small effect in a pa.perg‘ on Debye media.
Section 5 reviews comparisons of group and energy velocity. Section 6 introduces
and examines an elementary method for measuring permittivity. ’i‘he elementary
method may be useful when damping affects wave speed slightly, as happens in all

numerical simulations that are reported or cited here.

relates the onset of interference to a prediction.
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2. INSTANTANEOﬁS FREQUENCY

Pleshko? was the first to measure in a laboratory the instantaneous frequency

of a precursor, which is a frequency-modulated wave. Pleshko assumed, for the
sake of measurement, 'that consecutive zero crossings pf a time trace are separated
by a half-period, as is true for a sine wave of fixed frequency. The corresponding

approximation to instantaneous frequency

Winst += W/(T - t) (4)

is assigned to the instant half-way between zero crossings T > t. .The zero-crossing
technique is not always useful. For example, Figs. 3 and 4 have no zero crossing
after 2.3 x 107 1 sec, although frequencies there obviously decrease at those late
times. |

This section examines measurement techniques in which extrema and inflection
points replace zero crossings in (4). The techniques are examined carefully because
they are used to get the paper’s main result (Section 3), which is about a small

effect. Our technique for measuring instantaneous frequency consists of two guidelines:

(2) Infer frequencies from pairs of inflection points
or pairs of eztrema; do not miz types. o (5)

(b) Inflection p.oz'nis yield better accuracy.

Use of technique (5), instead of the zero-crossing technique, could have improved

measurements in Refs. 5 and 7.
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This section tests candidate techniques on a simulated precursor. The
simulation uses computer programs from Krueger and Winther (personal communication)
that are described in Appendix A. The simulation is for a 3-mm-thick homogeneous
slab of Lorentz medium (1) that .has plasma frequency w, = 10'?/sec, resonant
frequency w, = 5 x 10'!/sec, and damping § = 0. Outside the slab is free space
with unit permittivity. The incident field is specified just inside the slab’s left
wall, and the respon.se is computed just inside the slab’s right wall.

An incident delta pulse produces a transmitted field that is a delta function
plus a remainder, which is called a precursor. The precursor is illustrated in Fig. 3
and is defined analytically in the paragraph after (A6). We use inflection points
and relative extrema, but not the absolute extremum, to measure instantaneous
frequency in three ways. Figure 4 focuses on the useful part of Fig. 3; its circles
mark inflection points and its asterisks mark extrema. Inflection points in Fig. 4
do not follow the slow, upward rise expected of a low-frequency component; yet
we will see that inflection points give the best reconstructions.

Figure 5 illustrates the slowness (c¢/v) measured from Fig. 4 using three
techniques. Circles in Fig. 5 come from substituting consecutive inflection points
for consecutive zero crossings in (4); the asterisks come from consecutive extrema,;
and diamonds come from pairs consisting of an inflection point and an adjacent
extremum. The curve is the group-velocity prediction (¢/vg) for the medium,
which is undamped. Figure 5 is numerical evidence that the inflection-point technique
(circles) is the most accurate of the three considered. We will now explain this

numerical evidence.
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The signal in Fig. 4 has a high-frequency oscillation and a low-frequency,
upward drift. A low-frequency drift whose effect is constant between two extrema
should cause little error in measuring wj,s: because extrema are zeros of the first
derivative, and the derivative of a constant is zero. The error should be larger for
a drift that is linear but non-constant between extrema, though such a linear drift
between inflection points (zeros of the second derivative) produces little error.
Thus, frequency mez:surements based on inflection points should be more accurate
than measurements based on extrema, and far more accurate than zero-crossing
measurements. Further, systematic errors from extrema and from inflection poihts
should differ. The source of those differing systematic errors may'be seen in Fig. 4,
in which each inflection point is closer to the extremum on its immediate left than
to its other neighbor; However, some of that shift is expected because wavelengths
increase with time.

Instantaneous frequency is the reciprocal of a difference (4). Therefore, the
effect of differing systematic errors is reduced considerably by pairing inflection

points with other inflection points, and extrema with extrema. These last three

paragraphs are summarized in (5).

3. WAVE SPEED

This section examines three precursors in damped media. The precursors’ wave
speeds are measured in accordance with the guidelines in (5). This section’s last

three paragraphs describe the paper’s main results.
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Figure 6 shows a precursor computed, by the method in Appendix A, for a
half-space of Lorentz medium that has plasma frequency w, = 10'?/sec, resonant
frequency w; = 5x 10! /sec, and damping § = 2 x 10*!/sec. The natural frequency
v = m differs from the resonant frequency by 8%. The incident field is
a square-modulated sine wave that, just inside the material, has amplitude 10,
has carrier frequency we = 9 x 10*!/sec, consists of ten periods, and is directed
into the medium. T}‘xe field is computed for a depth 3 mm inside the medium.

In the simulation, each 3-mm spatial interval is represented by 700 points and
each 6-mm/c time interval is also represented by 700 points, defining a space-time
grid.* The simulation was compared with one for which each 3-m1.'n-by-6-mm/c
patch is represented by a 450-by-450-point grid. The simulations agree until 1.6 x
10~!sec but disagree thereafter, owing to accumulated discretization errors. In
particular, the extrema aﬁd inflection points marked in Fig. 6 occur at the same
times in the two simulations, to within the resolution of the coarser (430 by 450)
grid. All other simulations in this section passed similar convergence tests.

Extrema in Fig. 6 are marked by asterisks and inflection points by circles.
Instantaneous frequency [(4) and (5)] and arrival time are inferred from pairs
of inflection points and from extrema. Each frequency component is assigned a
speed v = 3 mm/T,, where T, is arrival time at the 3-mm depth. The slowness
c/v of each component is compared in Fig. 7 with three slownesses ¢/ve, which

correspond to energy velocity (3) for media that have zero damping (solid curve),

*Even though At = 2Az/c, the simulation’s evenly-staggered grid g;; = (iAz, (i+
27)Az/c) has slope ¢ between adjacent points, as can be shown by graphing the

points.
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the correct damping (§ = 2 x 10!!/sec, dashed curve), and critical damping

(§ = w, = 5 x 10'!/sec, dash-dotted curve). Data from inflection points are
plotted as circles and those from extrema as asterisks. The effect of discretization
error is illustrated in Fig. 7 wherever an error bar exceeds a point marker’s width.
The smallest un-illustrated error bar is half the width of a marker. Vertical error
bars are minute. Appendix B defines the error bars and Appendix C has further
error analysis. )

The most error-prone points in Fig. 7 are not useful for distinguishing
among energy velocities. Figure 8 focuses on the useful data. The slowness inferred
from inflection points {circles) is consistent with energy velocity fc;r damping
2 x 10! /sec and is less consistent with zero damping. Slowness inferred from
extrema (asterisks) is less conclusive; however, we showed in Section 2 that data
from extrema are less accurate than those from inflection points.

We computed a second precursor for the medium that underlies Figs. 6—

8. This time the incident pulse is a delta function. (The paragraph after (A6)
discusses delta functions.) The response 3 mm inside the dispersive half-space is

a delta function plus the remainder illustrated, in part, in Fig. 9. The positions of
extrema and inflection points change negligibly when the number of grid points is
reduced by 60%, implying numerical convergence throughout Fig. 9. The simulation’s
absolute minimum (—50 units, which is attained at 107!sec) is not graphed because
it is not used to compute wave speed.

Slowness for Fig. 9 is computed with inflection points and extrema. The
result is Fig. 10, in which circles represent data from inflection points, asterisks

represent extrema, and curves represent energy velocity for the same damping
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constants as in Figs. 7 and 8. All figures omit error bars that are narrower than
point markers.

In Fig.r 10, inflection-point data (circles) are consistent with energy velocity
for 2 x 10'! /sec damping, except possibly for the slowest component, which comes
from oscillations in Fig. 9 that have the smallest amplitudes. Data from extrema,
which are less accurate than data from inflection points, zigzag across Fig. 10.
Zigzags are most likf.:ly caused by inaccuracy of the extremum technique (5). (The
scattered asterisks would otherwise imply nonphysically that some frequency
components arrive twice. For example, the component w = 1.3 x 10'?/sec would
have speeds v = ¢/1.75 and v = ¢/1.9.) Conversely, the smoothn;ss of inflection-
point data, with a single exception owing to oscillations of srng.ll amplitude, is

further evidence of those data’sbreliability.

The last simulation uses the same plasma frequency w, and resonant frequency

‘w; as before. The damping § is increased to 3 x 10! /sec, so the natural frequency

v differs from the resonant frequency w, by 20%. The incident pulse is a delta
function and the response 3 mm inside the dispersive half-space is a delta function
plus the remainder in Fig. 11. There is numerical éonvergence throughout the
simulation. Slowness is illustrated in Fig. 12, in which the dotted curve represents
energy velocity for 3 x 10'!/sec damping and other notation is as in previous
figures.

We have now compared wave speeds of three precursors with. predictions
from energy velocity (dashed and dotted curves) and group velocity (solid curves).
No single data set is dramatically more consistent with v, (with damping) than

with vg (no damping.) However, the evidence—Figs. 8, 10, and 12—is more conclusive
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if viewed all together, and is strengthened by properly weighting the data from
inflection points (circles) and extrema (asterisks). In particular, we showed in
Section 2 that asterisk data should have greater error than circle data: a conclusion
supported further by the zigzagging of asterisks across Figs. 10 and 12. Therefore,
asterisk data should have less weight than circle data. With that understanding,
the data are conclusive.

There is com:incing evidence, in the case w, = 10'?/sec and w, = 5 X
10! /sec, that damping speeds-up frequency components noticeably, to a degree
that is consistent with energy velocity. The effect is too subtle, or our measurements
too crude, to resolve 2 x 10*! /sec damping from 3 X 10*} /sec darr;ping, though the
data are clearly inconsistent with critical damping 5 x 10'!/sec. That is, thlc data
are in rough agreement with energy velocity, but not in fine agreement.

" The numerical data have three sources of error: discretization error in
computing precursors, discretization error in measuring instantaneous frequency
(4), and crudeness of the inflection-point technique (5). The first two sources of
error are analyzed in Appendix B, and are represented quantitatively by error

bars in several figures. Appendix C estimates the error caused by the inflection-

point technique (5), with the result that this section’s conclusions are unaltered.

4. DEBYE MEDIA
Albanese, Penn, and Medina® computed precursors for water. Their model is a

conducting Debye medium

IT-23



a
o = constant e(w) =€ + T3 ioT (6)

for frequencies from zero to 100 GHz. (Reference 9 uses €; = 5.5¢9, a = 72.7,
T =28.1x 10‘125e§, and o = 107°.) Electrical properties at frequencies above 100
GHz are modeled differently. However, the incident field is a square-modulated 1-
GHz sine wave of tensperiods’ duration; thus, the precursor is determined almost
entirely by the Debye model (6). One of the precursor’s most striking features
is that it has few oscillations, which imply that wave speeds can be measured
for only a few frequency components, and those speeds are approximately equal.
That is, the damping constant T only slightly affects the speed of frequency components
that are observable and measurable in that simulation. Similar effects—which are
also slight—are seen in Section 3 and Ref. 5.

The earlier characterization of T as a damping constant should be explained.
The damping constant § of the Lorentz model (2) is aptly named because of its
role in the model equation z + 24z + wlz = ccnstant X eivt, It_is sensible to
call T' a damping constant for the Debye model because the; permittivity (6) is
a small-w approximation!® to the Lorentz model (2), with damping T = 24.
Although Lorentz and Debye models have easily-identified damping constants,
it may not be possible to extend the idea of a damping constant to all dispersive
media. However, there is evidence from three independent sources—Section 3 and

Refs. 5 and 9—that damping affects speed slightly or negligibly for oscillator-type

models.
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5. COMPARISONS OF GROUP AND ENERGY VELOCITY
A. Open Questions
Energy velocity is a generalization of group velocity,® and in that sense v, is better
than vg. That is, v. is better in theory. But how much better is ve empirically?
In particular, how much better doeé v, predict the speeds of frequency components
that can be observed and méasured?

.
B. Empirical Similarities
We explained after (3) how vg and v, predict equally well the speeds of frequency
components observed and measured in Ref. 5. That may seem pu.zzling at first,
because vg is complex-valued in the stop bands®'! of undamped Lorentz media,
and it is also complex-valued for damped media. This subsection discusses stop
bands at length, and then explains how vg and v, can sometimes be equally useful
when there is damping.

Energy velocity (3) predicts the speed of all frequency components, including
those in stop bands, but v cannot predict speeds in the stop bands®!! (w;, {/w? + w?)

of undamped Lorentz media (w,, wr, 0) because vg is purely imaginary there.l.1
We will show, however, that there has been no reliable frequency measurement
in a stop band; cénsequently, the usélessness of vg in stop bands has no proven
empirical consequence.

It appears that t:ile only papers that measure instantaneous frequency for
Lorentz media are the present one, and Refs. 5 and 7. Figure 6 of Ref. 5 shows

that the precursor there has no observable and measurable component in the
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stop band (4 x 106 /sec, 6 x 10*®/sec). Components in the stop band also aren’t
observed here. Thus, only one set of stop-band measurements has ever been reported.
Those mcasurements are in Figs. 8, 10, 12, and 14 of Ref. 7 (called (7, Figs.]), for
which the stop band is also (4 x 10'®/sec, 6 X 10%%/sec): The subject of that
paper (signal velocity) and this one (vg and v.) differ. However, the partsvof 7,
Figs.] to the left of the intervals identified there with the mark “4.,” may be
relevant here. That i.s because the left-of-8. parts are said, in text that follows
equation (2.12) of Ref. 7, to be dominated by precursors. Yet we will see that the
left-of-8. stop-band measurements of {7, Figs.] are not accurate enough for our
purpose because the measured speeds are multiple-valued functiox.ls of frequency,
and because of other matters relating to energy velocity. This is explained in the
next two paragraphs.

Energy velocity (3) is a single-valued function of frequency. That is why
Section 3 says that the zigzagging asterisks in our Fig. 10 represent theasurements
that are too inaccurate to be useful here. For example, if the asterisk measurements
in Fig. 10 were reliable (they aren’t, which is why we developed(5)), then the
component w = 1.3 x 10*2/sec would have speeds v = ¢/1.75 and v = ¢/1.9.

In another example, the different degrees of zigzagging in three data sets in the

' prt.tsent paper’s Fig. 5 make the relation of multiple-valued speeds and inaccuracy
even more clear, especially in light of the text in Section 2. Figure 5 suggests
further.that the bandwidth of zigzags is comparable to the error in measuring
instantaneous frequency. Thus, the degree of zigzagging in [7, Figs.] suggests
that the figures’ left-of-8. parts have data in the étop band merely because of

inaccurate frequency measurements. Such a result is unsurprising because simple
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differentiation (see the sixth paragraph of Section 2) shows that the zero-crossing
technique of Ref. 7 is especially apt to be inaccurate when frequency components
interfere, as they do in the simulations underlying (7, Figs.] That interference,
and other sources of measurement error, are discussed in Ref. 7 on pages 1438
and 1439.

We have just seen that the left-of-8. stop-band measurements in (7, Figs.]
are inconsistent witfl the energy-velocity prediction that speed is single-valued,
but those measurements are inconsistent with v, in other ways. For example,
energy velocity (3) predicts for the medium of Ref. 7 that frequency components
in its stop band (4 x 10'®/sec, 6 x 10'®/sec) travel no faster thar; one-eighth the
speed of light in vacuum, but [7, Figs.] are all inconsistent with that prediction.
To make a more thorough comparison with v., one can plot (3) directly on {7,
Figs.] and then observe that every left-of-6. stop-band component travels faster
than v, allows.

We conclude that the relevant stop-band measurements in {7, Figs.] are
too inaccurate for our purpose® because the corresponding speeds are multiple-
valued, and all of those values are too high. The only other papers that measure
instantaneous frequency appear to be the present one and Ref. 5, but neither
has stop-band measurements. Therefore, the inability of vg to make stop-band

predictions has no proven empirical consequence.

*More precisely, no left-of-8. measurement in Ref. 7 is accurate enough that it
can be relied on to be in a stop band. The measurements may still be useful in the

context of Ref. 7, which emphasizes signal velocity.



Ina ﬁna.l matter concerning Ref. 7, we want to make it quite clear that the
paper’s time traces are not in question. The time traces are unquestioned because
the paper’s departures from the predictions of energy velocity are most likely
caused by inaccurate frequency meaﬁu;ements. Some inaccuracies are discussed

in Ref. 7 on pages 1438 and 1439, and others are caused by the zero-crossing

technique’s special sensitivity to interference. Although better frequency-measurement

techniques are now .available in (5), Appendix B shows that the error in measuring
frequency still predominates: Frequency measurements are delicate.

Let us now consider damped Lorentz media, for which group velocity is
complex-valued. A complex-valued vg seems useless; but if the da.mping § affects
the speed of observable frequency components negﬁgibly, then v, for (wp, w;, 8)
and vy for the related undamped medium (wp, w;, 0) differ negligibly in their
predictions. That is exactly the case for the medium studied in Ref. 5; thus, as
is explained after (3), vg and v, are equally useful there. In a related matter,
Section 4 finds further evidence that damping attenuates the components it spe;:ds
up, making them difficult to observe. Those competing effects of speed-up and
attenuation explain how v, for a damped medium and v, for a related undamped

medium can predict equally well the speeds of observable frequency components.

C. Empirical Differences

The present paper appears to have the only empirical evidence that v, is better
than vg. In particular, Section 3 identifies media for which v, is noticeably better
than vg, though the difference is slight. Efforts to find Lorentz media in which v.

is far superior to vy were unsuccessful, but not all Lorentz media were examined.
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In spite of numerical evidence from several sources, it is still unknown
whether energy velocity is any more than slightly better than group velocity from
an empirical point of view. That uncertainty is striking, considering that many

papers mention energy velocity.

6. ELEMENTAR'{ INVERSION
This section makes an observation, apparently unnoticed since precursors were
first
predicted'*~1% in 1914, that wave speed determines permittivity e!ementarily.
Limitations of this elementary inversion are discussed. The conclusion is in the
first two paragraphs after (8).

It is easy to measure gréup velocity for undamped media. Substitution of

vg = dw/dk into (7) verifies that permittivity can then be computed from vg as

e(w) = w™? [won(uo) e [ ] ™

where n(wp) is the index of refraction at a starting frequency wq. If group velocity
is measured for high frequencies, as has been done here and in Ref. 5, then one
could choose wy to be the highest such frequency and assume n(wo) =~ 1. After
all,'! n(w) - 1 as w — co. Thus, it is easy to measure the high-frequency part of
permittivity for undamped media... The same measurement appears to determine
with fair accuracy all but the damping constant for damped Lorentz media. The

next two paragraphs examine difficulties faced by elementary inversion for an
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isolated interval of.frequencies that are too low for the approximation n(wp) = 1
to be valid.

Identifying a starting point {wg, n(wp)) in an isolated band of low frequencies
is problematic, especially because laboratory apparatus that produce precursors
may not be suited for measuring an index of refraction. In some applications,
however, one may have prior knowledge of starting-point data to within reasonable
error. For high-freqiiency starting points, the error is small and the reconstruction
good. For low-frequency starting points, starting-point error is likely the predominant
error. This predominant error causes the mathematical difficulty that is considered
next.

Assume in this paragraph that ¢ is causal, that group velocity vg is known
accurately for every frequency in an interval [a, b], and that n is known for no
point in [a,b]. Set ¢4 to be the right side of (7) after the undetermined product

won(wo) is replaced with an arbitrary parameter a:

ealw) == w2 [a Fe / ’ ;5(‘:—)] " (8)

wo

"A causal permittivity, such as ¢, can’t have a second-order pole at!! w = 0. This

section’s last paragraph proves that €4 has a second-order pole at w = 0 unlgss ‘
a = won(w;,). Thus, there is a unique causal €4, which is €. In inverse scattering,
uniqueness is oi:ten helpful, but not so here: Anything but the precisely correct—
hence unlikely-——choice of a yields noncausal, nonphysical permittivity. Thus,
elementary inversion for an isolated band of low frequencies has a predorﬁinant

error that ruins causality.
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We conclude that elementary inversion (7) can safely be used for data

covering an interval that includes high frequencies. Inversion then is valid throughout
the interval, even if the inter‘va.l also includes low frequencies. Elementary inversion
may not be useful for isolated bands of low frequencies.

Time-domain experiments!”~!° on dispersive materials were performed in
the 1960s and 1970s and the data analyzed in the frequency (iomain with methods
more complicated tHan (7). Time-déma.in experiments continue,?® partly in response
to new methods of data analysis?*~2% in the time domain. Elementary inversion
(7) appears to be the simplest frequency-domain inversion available for time-
domain data. Elementary inversion is useful to varying degrees in different media.
It i; useless for the Debye medium simulated in Ref. 9, useful for Lorentz media
simulated in this paper, and more useful for the Lorentz medium simulated in
Ref. 5. For example, perfnittivity can be computed by simply integrating, as in
(7), the v; measurements in Fig. 5 or the measurements in Fig. 6 of Ref. 5.

This paragraph proves a result used earlier in this section. We assume, for
the reason given after (8), that neither € nor €« has a pole of order two at w = 0;
then we show a = won(wo). Let A = a — won(wo). Then (8), vg = dw/dk, k =
wn/e, and € = n? imply €q = € + A, where the function A = A(A + 2nw)w=? also
does not have a pole of order two at w = 0 The equation A = A(A + 2nw)w™?

implies
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Neither A nor ¢ has a pole of order two at w = 0. Thus, (9) implies A = 0,

finishing the proof.

7. CONCLUSION

Section 3 shows that damping can affect the speed of frequency components noticeably,
though the effect is slight. The effect’s small size is surprising because it implies
.

that energy velocity is only slightly more accurate here than is group velocity.
Section 5 notes that there are now four independent sources of evidence that
damping’s influence on wave speed is slight or negligible for some Lorentz and
Debye media. One interpretation is that the effect is small because of two competing
mechanisms. Specifically, damping attenuates severely the frequency components
whose speeds are most changed.

One practical consequence of this work is that the elementary inversion
technique in Section 5 may be useful for some damped media, as w;vell as for undamped

media. The techniq‘ue uses wave speed measurements that include high-frequency

data. Two numerical examples are mentioned between (8) and (9).

APPENDIX A: DIRECT-SCATTERING ALGORITHM

“This paper’s simulations all use computer programs from Krueger and Winther

(personal communication). The algorithm that underlies the programs has not
yet been published, although it was rederived in detail by one of us and is further
validated in Ref. 24. The algorithm uses a wave-splitting technique to calculate

time-domain Green’s functions. (Wave splitting is described simply in Ref. 25.)
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Similar time-domain Green’s functions, thch we ca.li Krueger-Ochs Green’s functions,
have been used for isotropic?® and anisotropic?” nondispersive slabs that are continuously
stratified, and for cylinders whose dispersion is of type?® D(r,t) = e(r){E(r,t) +
I dsg(s)E(r,t — s)] where r is radial distance. These functions have also been
used in transport theory.??

In response to a referee’s suggestion, we document the unpublished Krueger-

¢

Winther algorithm by describing a slight generalization. We state results only.
Details are deferred to Ref. 24 and a possible future paper by Krueger and Winther.

We will solve Maxwell equations for pulses normally incid'ent on a finitely
thick, flat slab with properties!! VXE = —podH, VxH = J +8,D, J(z,t) =

o(z)E(z,t), and

D) = oo [Blat) + [ dso(a)B(zt =) (A1)

where po and ¢g are constants and g(t < 0) = E(z > 0,t < 0) = 0. The slab’s
boundaries are z = 0 and z = L. Let ¢ = 1/,/H0€o and define dimensionless

variables

$=Z/L ‘T =Ct/L . . (A?.)

in which the slab’s boundaries are z = 0 and z = 1..The wave equation for the

electric field is

{02 - 82 + B(z)0-] u(=,7) + 33/ dsy(s)u(z, 7 —s) =0 (A3)
0
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where B(zj = —pgLco(z(z)] = —poLea(Lz), v(7) = —Lcg(t(r)} = —Lc™ g(Le™17),
and u(z, ) = E[z(z), t(7)].

Define convenient basis functions

[u(z,T) - /ordsazu(z,s)] . (A4)

B —

The functions u= are basis functions in the sense that v = u* + »~. Qutside the
slab, where B = v = 0, we have® uv™ = u™(z — c¢t) and v~ = u™(z + ct); thus,
the time-domain boundary condition of incidence can be expressed conveniently

. —_ . <4
in terms of u* and u~. The wave equations for u™ are
§

) (45)
+0; | dsy(s) [ (@ - 9) +uT(mr - a)], ‘

which are coupled integrodifferential equations. The last paragraph defines Krueger-

Ochs Green’s functions G=(z,7) and a function a(z) such that

ut(z,7) = a(z)f(r —z) + /.""‘” dsf(s)G (z,T — 3),
. | (A6)
v (z,7) = /(; dsf(s)G™ (z,7 — s)

solve (A3) subject to the boundary conditions ©v¥(0,7) = f(7) and v=(z > 0,7 <

0) = u(z > 1,7) = 0, for which the incident field is f. Thus, computing G=
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solves the scattering problem. The logical flow of the solution is (G=, f) = v= —
u=ut+u" = E(z,t) = u(z/L, ct/L).

Equation (A6) and the boundary condition v~ (z > 1,7) = 0 show that
ut(1,7) is the transmitted field. For that reason, G*(1,7) is called the transmitted -
response to an incident delta function f(s) = d&(s), after an attenuated delta
function a(1)é(+ — 1) is subtracted from the transmitted field in (A6). Also,

)
the term for-l dsf(s)GT(1,7 — s) is called the precursor, for any incident field
f for which the previous integral exists. The response G¥ and the precursor are

computed without having to represent delta functions numerically. Indeed, delta

functions are used here only in physical interpretations, not in derivations?® or

numerics.

Let

a(z) = exp [-;- /0 : dz'B(z’)] . (A7)

Krueger-Ochs Green'’s functions G= satisfy the coupled integrodifferential equations

28, + 8,)G* (z,7) = —2(8: — 8,)G" (=, 7)
= B(z) [G7(z,7) + G (z,7)] +a(2)8:4(z,7 — z)

+ /Or_: ds [0,7(z,3)] [GT (z,7 = 5) + G (=,7 — 5)]

subject to boundary conditions
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where =7 stands for the limit 7 | z. The functions G= are continuous except

as described in (A9). The method of Ref. 30 can be used to prove that thereis a
unique pair of solutions G= to (A8)—(A9). The integrodifferential equations are
solved numerically with the method of characteristics. That method is applied to

similar equations in Refs. 26 — 29.

APPENDIX B: ERROR BARS
This appendix is written mainly in terms of extrema. The results also apply to
inﬁect;ion points, because inflection points are e.xtrexna of a first derivative.

The error bars in Figs: 7, 8, 10, and 12 represent the roots-mean-square
of random errors in wigs. There are two sources of random error. They are the
inexact computation of time traces and an inexact method of identifving extrema.
The next two paragraphs estimate the roots-mean-square of those two types of
error. The root-mean-square (rms) of the superposition of the two errors is then
calculated. That calculation determines the rms error of each extremum'’s time

coordinate. Consecutive extrema T and t define an instantaneous freguency

IT-36



Winst 1= 7/ (T — t) (B1)

and the errors in T and ¢ thereby affect wins:. The rms of the resultant error in

Winat is calculated in (B2), and is used to define error bars. In this paper, each

pair of error bars represents a computed frequency wi,,:, plus-or-minus the rms

€rTor IN Winst. Notics that the bars fepresent random errors, not systematic errors.
Systematic errors are discussed in Section 2, where it is shown that the inflection-

point technique has smaller systematic errors than the extremum technique. Appendix C
shows that systematic errors insignificantly affect the agreement of inflection-

point data and energy velocity.

Let us now estimate the random error ¢aused by inexact computation of
time traces. The estimate is based on convergence tests described in the second
paragraph of Section 3. Recall that time traces are computed on two grids whose
resolutions differ significantly, and the traces’ extrema are found‘ to coincide within
the resolution of the coarser grid. That convergence test shows that the coarser
computation attains what is commonly called. coﬁvergence; thus, one expects
the finer computation also to converge. Consequently, one expects the extrema
of the finer computation and the extrema of a hyp‘othetica.l, exactly-computed
time trace to coincide within the grid spacing A of the finer grid. We therefore
assume that errors in the time coordinates of the finer computation’s extrema are

distributed uniformly between —A and A. The corresponding distribution P ()

of errors z is 1/(2A) for |e] < A, and 0 otherwise; and the rms error [ff‘A de Py (g)e?]}/?
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is A/v/3. That is, the ineiact computation of time traces causes errors in the
time coordinates of extrema, and the rms of those errors is approximately A/V3.
Let us now estimate the rms of the error in identifying extrema. This new
error will be defined by describing the way extrema are identified in practice: A
time trace is computed on a grid of time-resolution A, is subjected to convergence
test, and is found to pass the test. The trace represents an electric field Ea(iA)
at times iA, for vari.ous consecutive integers i. Each relative extremum oA is
found to be sharp in the sense that, first, |Ea(i0A)] > max{|Ea([io—1]1A)|, |Ea([io+
1]A)|}, and, second, the numerically-computed time trace has only one relative
extremum at each broad peak in Fig. 6, 9, or 11. The sharp extremum is then
said to occur at time 7oA. Figure 13 shows that error can result even if the resolution-
A computation is exact. For that reason, we assume that the error illustrated in
Fig. 13 is uncorrelated statistically with the error that is estimated in the previous
paragraph. Because of the lack of correlation, it is not a restriction to assume,
merely for this paragraph’s error estimate and for calculations leading to (B2),
that the resolution-A computation is exact: that is, to assume that each computed
value Ex(iA) equals the exact electric field E(t) at ¢ = iA. Existence of 8, E(t)—
which followé from the constitutive relation (1) and the Maxwell equation for
0:D—then implies that E(t) is almost symmetric in a small neighborhood of any
relative extremum T, as illus_trated in Fig. 13. That symmetry helps determine
the mzi:ﬁirnurn ;;'cissible difference between 19A and T, given that ipA is a sharp
extremum. The maximum difference is illustrated in Fig. 13, in which iqA\ is T —
A/2, minus an ’inﬁnitesim.al, and Ea(i0A) is infinitesimally larger than Ea(ity +

1]A). In fact, oA is a sharp extremum if, and only if, it is in the interval (T -
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Fig. 13. Extrema (*) and grid points (e) are unlikely

to coincide.
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A/2,T 4 A/2). The corresponding distribution P;(e) of errors € is, consequently,

1/A for |e] < A/2, and 0 otherwise; and the rms error [fi(jz dePy(2)e?j /% is

AJV12.

The roots-mean-square of two sources of random error have now besn estimated.
One rms error is A/\/§ and the other is A/\/Tﬁ The second estimate comes
from a model in which the two sources of error are assumed, with justification,
to be uncorrelated. Consequently, the rms of the total random error in the time
coordinate of any extremum is [(A/v3)? + (A/V12)?]}/? = A/5/12 = 2A

The rms error that was just calculated affects the time coordinates T and
t of consecutive extrema, which define the instantaneous frequency wi,,; in (B1).
A relevant equation for the propagation of rms errors is kriown most widely in the
context of Gaussian-distributed errors,®! but the equation also is valid for other

distributions.?? That propagation-of-error equation implies

oy 21172
wlﬂ!
leull = [(Ile L ) (ee 2 ] (B2)
where |le,|| is the rms error in winse, |le7]| = |le]] = &1/5/12 are the rms errors in

T and ¢, and the partial derivatives in (B2) are calculated by differentiating (B1).
In this paper, error bars span the frequency intervals (wins: — {|€wlls @inse + [lew]])-
The analysis in the previc;us paragraph can be adapted, with changes, to
the vertical coordinates c/v = ¢(T + t)/(2-depth) of Figs. 7, 8, 10, and 12. The
adapted analysis shows that vertical error bars are much smaller than e height

of the figures’ point markers. Thus, the time traces in Figs. 6, ¢, anc ! come
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from convergent numerical computations, and the corresponding errors in c/v are
minute, yet there are significant errors in measuring frequency. This observation
supports the statement, made in the next-to-last paragraph of subsection 5B, that

frequency measurements are delicate.

APPENDIX C: EERTURBATION OF INFLECTION POINTS

Section 2 shows that the inflection-point technique yields our most reliable data,
but those data still have errors. Those errors are estimated here in two ways. The
estimates do not change the paper’s conclusions.

Inflection points follow imperfectly the slow upward drift in Fig. 6. There
is an urge to displace points, especially the negative-valued one at 1.2 x 10~ Msec,
to slightly later times: displaced points would follow the drift. To estimate the
effect of such displacement, imagine that only the most deviant point—the one at
1.2 x 107 sec—were moved. Then the circle in Fig. 8 at 2.2 x 10!?/sec would
draw toward a slightly lower frequency and the circle at 1.6 x 10!2/sec would
move to a higher frequency, improving the fit to 2 x 10'!/sec damping. Thus,
replacing inflection points with points that more closely follow the drift in Fig. 6
would reinforce the paper’s conclusion slightly.

The next-to-last paragraph of Section 2 notes a second suggestion in the’
data that inflection points be moved to later times. In the context of that paragraph,
systematic error can be estimated pessimistically by shifting two ir;ﬁec:ion points
in Fig. 6 (the ones at 1.2 x 107 !!sec and 1.4 x 107 !!sec) by equal amounts,

to about the midpoints of neighboring extrema. Such a shift would not affect
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instantaneous frequency (4) but it would increase slowness, which is 1.3, by 1%.
A 1% shift of the corresponding point in Fig. 8 would not bring it into line with
zero damping. A similar shift of the inflection points that correspond to slowness
1.5, would be less justifiable because a neighboring extremum is outside the range
from 0 to 1.6 x 10~!'sec for which convergence in Fig. 6 is evident. In any case,
the estimated shift for slowness 1.5 would not bring the corresponding point in
Fig. 8 into line with zero damping.

We have just shown that error from inflection points is acceptably small.
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Inversion Method for Depth-dependent Dispersive Media

1 Problem Statement

We wish to use reflection data to determine the dispersive properties of a flat slab that has
boundaries at z = 0 and L. The slab’s dispersive properties are defined by the Maxwell
equations V-D = V-B = VxE+dB =0, B = poH, and VxH = 6D +J, and by the
constitutive relations [1]-[2] :

D(z,t) = €oE(z,t) +v.[dsWD(z, t — 3)E(z,s)

(1) :
J(z,t) = o(z)E(z,t) +/° dsWi(z,t — s)E(z, 3)-

That two-sentence problem statement assumes that the permittivity o and permeability o
of the slab are equal to their free-space values, as is true for many nonmagnetic materials.
The slab (1) is stratified in one spatial dimension z, and the dispersive properties in (1) are
functions of the variable ¢ also. Such functions of the two variables z and t will be inferred-
from reflection data as a function of the time t and the angle of incidence 6. We will now
use a gauge for dispersion to simplify (1) and to establish a fundamental physical limitation
on the ability of purely electromagnetic experiments to determine o, Wp, and Wj.

A dispersion gauge was developed recently (3]; it is easy to understand. A gauge is a
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free parameter that does not affect fields. In electrostatics, for instance, the notation

(2) $a)=9+a

reminds us that the scalar potential is arbitrary to within an additive gauge constant a
because the electric field E = —~V(¢ + a) is independent of a. For that reason the potential

" (a) is said to be gauge dependent and E is said to be gauge independent. It is physically

impossible to measure gauge-dependent quantities: That is why two potentials ¢(4) and ¥(q)
can’t be measured separately, although the difference ¢(a) — Yoy = (¢ +a) - (¥ +a)=¢ - ¢
is gauge-independent and physically measurable. Many undergraduate [4] and graduate
[5] physics texts use the vector potential as a second éxample of the physical impossibility
of measuring gauge-dependent quantities. This physical principle, that gauge—dependent
quantities can’t be measured directly, also applies to the dispersion gauge.

The dispersion gauge is any function f(z,t) that has a time derivative and for which
f(z,0+) = limyo f(z,t) exists and is finite. The gauge affects the displacement D, the current
J, and the dispersion-related quantities o, Wp, and W; by way of

VxH = a,D(,) +J(p)

¢
Dy(=z,t) = g0 E(z,t) + / dsWp,()(z,t — ) E(z, 3)
0

(3) Jiy(=,t) = ogp)(z)E(=, t) + ./; dsWi,(s)(z,t — 3)E(z, 3)

WD.(/)(SJ) = Whn(z,t) - f(z,t)
Wi,0)(z,t) = Wi(z,t) + 0e f(=,t)
oy (z) = o(z) + f(=,0+4).

It is .easy to verify [3] that H and E are independent of f; that is, H and E are independent
of gauge. We will now show that the total current J and the dispersion kernel 4

(4) , _J(Z,t) = a,D(,)(z, t)+ Jin(=,t)

(5) ¥(z,t) = o(y)(z) + Wo () (=, t) + /0 dsWi,(5)(z, 3)

are also independent of gauge. The total current J is independent of the gauge f because
the gauge independence [3] of H implies that both sides of the first equation in (3) are
independent of f. The gauge independence of v is established by using (3) to expand the
terms on the right-hand side of (5). We have just established a fundamental result:

THEOREM 1.1 Each of the quantities D(!i: J(,;, o(s), Wo,(s), and Wy (4 is gauge depen-
dent. The fields E and H, the total current J, and the dispersion kernel v are gauge inde-
pendent. Consequently y(z,0+) and G:y(z,t) also are iridependent of gauge. If Wp and W,
are sufficiently smooth, then ~(z,0+) = o(z)+Wp(z, 0+) and dc1(z,t) = Wi(z,t) +8:Wp(z, t).

This elementary theorem is important because, as the second paragraph of this section
reminds us, gauge-dependent quantities can’t be measured. That is, in the framework of
the constitutive relations (1), it is impossible to measure the gauge-dependent quantities
a(sy, Wo,s), and Wi 4y separately; for that reason, the following sections of this paper
concentrate on measuring the gauge-independent combination iy = 8:Wp,(4) + Wy (y)-

A CAUTIONARY NOTE: Theorem 1.1 (above) has the following cautionary implication
relating to energy density. Many energy-density computations are based on Poynting's
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‘ equation E - (VxH) = E - J, in which both sides are independent of gauge. However,
some matters associated with the related energy-density computations are “open to some
criticism,” says [6] in a discussion of nondispersive media; but for dispersive media there is
one more matter of concern: Some energy-density computations (6] have separate physical
interpretations for the terms E - 8, D(yy and E - Ji;); yet theorem 1.1 (above) implies that
those terms can not be measured separately. The term E - J, however, is independent of
gauge, and can therefore be expected to be physically measurable.

2 Method of Solution
Apply the gauge f = Wp to (3) to obtain the dispersive-conductivity representation

D(3,t) = €0 E(z,t)
J(z,t) = (z)E(z,t) +/; dsg(z,t — s)E(z, s)

5(z) = 2(z,0+) = o(z) + W (2, 0+)
9(z,t) = 8ey(z,t) = Wi(z,t) + 8:Wp(z, t)

(6)

of the constitutive relations in (1). Theorem 1.1 says that & and g are gauge ‘independent.
One published assertion (7] may be interpreted as suggesting that & must be 0; but the
assertion, as printed in [7], is not substantiated in the text of [7]. In this presentation
we assume merely that g(z) is a known function; we do not necessarily assume & = 0.
Our inverse problem, therefore, is to infer g(z,t) from time-dependent reflection data as a
function of the angle of incidence 6.

We assume that & € Lo [0, L] and g € Loo([0, L] x [0, 00)). Then the techniques of [8] and
[3] imply that there are integrable functions R and T such that

RN = [ asR(t-)10)
(7) t—L/co

L
(T)(E) =exp I:—-/o dzE(:z:)/(2co)] [f(t — L/eco) + / dsT(t — L/co — s)f(s)

o
are the time-dependent reflected field (Rf)(t) and transmitted field (7 f)(t) produced by a
field f incident on the spatially heterogeneous slab (6) of length L. The speed of light in
free space co = 1/,/ogo is used in (7). .

The Redheffer operator product [9] shows that the reflection operator for a composite
formed of two slabs is

(®) Re=R1+ Ti(l = RaR1)"1R2Th,

where each numerically subscripted operator has the form (7). A little thought shows that
the inverse operator in (8) exists and has a resolvent-kernel representation [10] that is related
to a Volterra integral equation of the second kind, whose difference kernel is ;™" ds'Ra(t —
s—')Ry(s'). The resolvent-kernel representation and the integral representations in (7) are
used to expand the four-operator composition 7i(1 — RaR1)~!R,T: in (8) in terms of the
integral kernels of the operators. A discretization of that four-operator composition is used
to solve the inverse problem. ’
A long derivation shows that the integral kernel RZ of the operator R. has the form

9) RY(t +8) = A%(t) + BY()G1(t + 8) + CE(£)R(t + 6 — 2z1/co) + O(63),
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in which R&(t + d) is the reflection-kernel data at a time t + & that is slightly later than ¢,
Gi(t + 8) = g[zo, (t+8)] is evaluated at the first spatial discretization point zo = 0, R3(t +
§ — 2z1/co) is the reflection kernel for the whole slab with the layer [0,2,) removed, and
the quantities A¢, B?, and C{ depend on g for times equal to or earlier than ¢ and on Rj
for times equal to or earlier than t — 2z;/co. The superscripts in (9) are reminders that,
although scattering is generally a function of the incident angle 8, the material properties
g¢(z,t) are independent of 8. The computation of A}, B{, and C} is described in the next
section.

The next paragraph shows how (9) is used for inversion when the slab (0, L) is discretized
into three spatial intervals. The three-interval discretization is generalized to n layers later
in this section.

This paragraph descriles the central idea in the new inversion method used here. This
central idea is illustrated by discretizing the slab [0, L) into three spatial layers [0, z1),
[z1,23), and [z3, L), and adding a free-space layer [L, o). Omitting time dependences such
as (t), (t+6), (r+ 8 — 2z:/co), and so forth, we iterate (9) as follows:

R = A% + BIG, + C{(A} + B§G2 + CIRE) =
(10) Re = A% + BYG,y + CPAS + C!BIG, + CICI(AS + BSGs + CIRY) =
RE = (A% + COAS + CICAS) + BYG, + C{B}G1 + C{C3 B Gs.

The recursive derivation (10) follows from (9) in the context of layer stripping. In particular,
(9) relates the reflection R¢ from the four-layer composite (0, c0) = [0, z1) U {21, 23) U [z3, L) U
[L, ) to the dispersion kernel G, of the first layer [0,z1) and to the reflection R} from
the three-layer, stripped composite [z1,00) = [z1,22) U [z2, L) U (L, 00). But the three-layer
composite can be similarly related, by using (9) again, to the reflection from the two-
layer, stripped composite [z32,00) = [z3,L) U [L,0). Thus, one iteration of (9) yields the
first line of (10), in which R§ is the reflection kernel for the two-layer, stripped composite
[z3, L) U [L, 00). The recursive derivation (10) terminates with the reflection kernel R{ = 0
because the reflection RY from the free-space layer [L, c0) is zero. Because of the recursive
nature of the derivation, the numerical algorithm that is used to compute the coefficients A],
B, and C? for the first composite [0, o) can also be used to compute the general coefficients
A?, B, and C! for any of the stripped composites [z;-1,o0). The algorithm for computing
A?, B?, and C! is described in the next section. Please note that every §-dependent term
in (10) is marked with a 8 so as to emphasize that the g-independent unknowns G, Gz,
and G3 can be determined by measuring the reflection R? from the full composite [0, oo} for
three angles of incidence 4, and then inverting the three-by-three matrix equation that is
implicit in the last line of (10).

We will now present a matrix equation for an n-layer, (n+1)-point spatial discretization
20, 21,22, ...,Zn Of the slab [0, L). The n-layer generalization of (10) is

n j-1 n j=-1
(11) BiG,+ BIG; [[ci=RI-43-> A T] cl,
=2 k=1 =2 k=1

in which all the G; terms are on the left side of the equality. If R? is measured for N anglés
6 then (11) is equivalent to the matrix equation

(12) I\/I-[Gl,Gg,...,G,.]T::[vl,vg,...,vN]T,
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for which the i, j element of the matrix M is

_ § Bi, ifj=1
(13) M‘.] - { Bi'j i;i C",‘k’ OtherWise

and
n k-1
(14) vi = Ric— Ain — z Aix H Ci,
k=3 I=1
and T denotes transposition. For each i = 1,2,...,N the quantities A;;, Bi,;, Cij, and

R stand for Ag, B;’, C]‘-’, and R¢ evaluated at the incident angle 8 = 6;. If the number
of measurement angles N is greater than the number of layers n, then the system (12) is
overdetermined. If N = n then -

e
(15) [G1,Gz,...,Gn]T=M"1 -[vl,vz,...,v"]T.

3 Computational Algorithm

An inverse scattering problem for heterogeneous dispersive media is defined in (6). The
last steps in the algorithmic solution are (12)—(15). All that remains is to show how the
quantities A?, B?, and C? in (12)-(15) are related to the material parameters defined in (6).
That relation is presented here in the form of a computational algorithm. The algorithm
comes from derivations that are much too long to report here.

The following three-page computational algorithm documents the extent of development
of a solution to the inverse problem identified in this paper’s first paragraph. The three-
page algorithm itself contains no new ideas; the new ideas in this paper are all in section 1
and in the paragraph that includes equation (10). The algorithm is worthwhile because it
is ready to be programmed.

First define ¢ = [poeo—(sin®8)/co]~1/2, € = z/L, and 7 = ct/L, in terms of the total length
L of the slab and the angle of incidence §. The slab interval is [0, L) in the ordinary spatial
coordinate z and [0,1) in the unitless coordinate £. In this section, functions of unitless
variables such as g(¢,7) are understood to be related to functions of z and ¢ according to
the rule g(¢,7) = g(¢€L, 7L/c). We will discretize the unitless variables as ¢ = ih and 7 = 2jh,
for any h that is the reciprocal of a positive integer.

For the sake of computational efficiency, in case the slab has some thick homogeneous
layers, we define indexes 0 = Lo < L; < Lz < --+ < Ln = 1/h for the boundaries of the layers;
in particular, for each i, g(¢,7) and 5(€) are constant V€ € [hLi-1,hLi). The layer indexes
do not restrict the generality of this work because, if there is no thick homogeneous layer,
then we set L; = i for i = 0,1,2,...,n. The notation L(i) = L; is used later in subscripts
such as g;; = gL(s)-

The algorithm in this section is derived using layer stripping, as is symbolized in (10).
If we strip layers 1 through (i — 1) from the laminated slab, then the remainder [AL;-1,1)
of the laminate is '
(15) gk (6,7) = 9(€ + hLi-1, T)H(E)

(€)= (¢ + hLi-1)H(E),

where H is Heaviside's step function. Each stripped layer [hL;_1, hL;) has the electromag-
netic properties '

g6, 7) = o€ I H (AL ~ hLia ~ )

(17) ; '
ES)(E) — Eg)(E)H(hL‘ —hLiy = ).

I -5



Let

(18) o = g(hLi_1,27h), 56) = F(hLi-1)
represent the slab’s properties at the left face of the ith layer [RL;_,, kL), and let
(19) : p) = —poh(Li — Li-1)Lea(i) /2.

Let Gg)*(f.-r) be Krueger-Ochs Green functions [8], such that
56 n) = 5 [06n) % [(as0cEdie, )
BR(6n) = B (6 ) + BR (6 )

) ¢ .
ESY (€,7) = exp [~ L/ (2)] [f(r =€)+ /0 ds GR* (6,7 = 9)f(s)

EQ(¢,7) = / " GY (¢, - 9)f(s)

solve the scattering problem of fields f incident on the stripped slab g (') (i=1,2,...,n).
Similarly, let Gg)‘(f,r) be the Krueger-Ochs Green functions that solve the scattering
problem for the isolated, stripped layer gg), Ei) (i=12,...,n). Such Krueger-Ochs Green
functions were originally developed analytically and numerically for nondispersive media
(8], then generalized and numerically validated for normal incidence on dispersive media
[11], and then generalized to oblique incidence [3].

Let us now re-introduce the time arguments that were omitted from (10)-(15). Equation
(11) then becomes

i-1
Bg(hLo,+8) + ZB" (hLjor,m+8—2hL; ) [[ Cf =
j=2 k=1
(21) . i
= B2 (r +8)48(r) 3 AY(r ~2h150) [] €2
ji=2 k=1
Define
A = A22(j — Li-1)h]
B() = B!
(22) cti) =¢C?

G = W% (ih, 27k)
GUE = G¥*(ik, 2Jh),
with Ag-‘) =0 when j < L;—,. Replace 7 and § with 2Jh and 2h in (21) to obtain

k~-1 n k-1
) BOGEL 3 BWe, 4y [] ¢t = B2y + 1) - AP =3 AP T co.

k=2

Equation (23) is of the same form as (11) except that (23) denotes the time dependence
more explicitly. Equations (21)-(23) indicate correctly that BG) and C() are tlme indepen-
dent; in fact, a long derivation shows that

BO) = (h/2)[2 -+ ko) [2 - hpt® - h1gl]
(24)

- . T 1)— 1+1)—
€O = exp [ /c] {1 FonGU 4 ke (G, GER + U GO, )0]}
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where A(3) = A = Liy1 — L;.

The only task remaining is to show how to compute A(Ji). That task is the longest one
in this section and, because of a triple integral in (27), it is also the most computationally
intensive task here. The triple integral is of convolutional form, however, so the fast-Fourier-
transform (fit) technique for computing convolutions can be applied. The fit technique
would speed up the triple-integral computation, but, if one of the integrands has a Fourier
transform that is broad banded, then the fit technique may be significantly less accurate

than would a straightforward trapezoid-rule computation of the triple integral in (27).
Define

¢ . .
K(i}(t)c_—./ ds GE+V=(0,2 - 5) G197 (0, 5)
0

pO() = KO + [ ds KOG 9)p(5)

(25) n@(t) = pli)() + GE* (R, 1)
rl), = exp[khp(il]g})

I-1
i)+ §) (i) £ i) ) i) A(1)E
Aﬁ,)J =h [.‘h() )Gg,,)k,] + gg)Gg,,)k,o +2 Z 9; )G£.)lc,1—j
. =1

The quantity p(®) is the resolvent kernel [10] for a Volterra integral equation of the second
kind, whose difference kernel is K()(t, s) = K()(t—s). A time-discretized version of p(i)(t) can
be computed by inverting a triangular matrix, which can be done with Gaussian elimination
and scaling. Next, compute
(26)

4D =5 49

o) = [2- hpt) - h=g{,"’]—1 X

’ J
ot o ottt oottty o st

=1

B0 <K exn /] {26835, + b (GG + O]}

B = exp [px:/} [ €6 + ¢+ () + (6], for v 2 2.

Finally, compute
(27)

. 2Jh . ’ N s s . .
) = /o ds GY*(hXi, 27k + 2k = 3) /0 ds'pli)(s — o) /0 ds” GEF1I(0, 51 — )G (i, 5)

. 21" . .
¢ = ( /2 . d,{ [1 + hcg_y(‘.).o] p(2Th + 2k — 5) + GL)(RAi, 2k + 2h — 5)o

2Jh

o / ds’ GEI7(0,s — )G (i, o) + [ dsp)(2Th - 5)o
0 . 0

o/ ds' G§TI7 (0,5 — o) [GSH(h/\;,J' +2h) + hGIE 1G€)+(h/\;,s')])
| A0,
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2JA ) e _ .
f ds ({ (14560 o] GEFY™(27h + 28 = 5) + A 2R)GEF ™ (0,27h - )}
x G (hX;, 3) + [17(")(2.]11 +2h = 3) + hGE L pO(2Th + 2k - 8)+
O+ ) _ (+1)-rg 4
+ hGL iy 1P (2Jh = 3)|GRT7(0,3) | +
+hGEH- [1 +hGEE 0]
2Jh - @
< / da [KO(27h+ 2 = 2)p)(s) + GE*D7(0,27h + 20 - )G (0, )]
2h .
T - . ' [ 1 i+1)- I ) y
)= [ {cg;,}g [1930278) + 68X, ]+ 265506 1t GRED (1 (2m) + G, 1]}
(o [of3 6k + ook + o 6]+

+ G0 [ 26U n()(2TR) + 2GEEN () (2h) + GEEY” Gg’;’(‘.)'m] +

+GUk, I{Ggg}g- [0 (2T R)+ pi)(2Th))+ p)(2Th=2R)GSHY) ™+ GEEY: 1,,(a)(zh)}) +

+ O(h3)] .

Of all the ((') terms, it is ((‘) that uses the most ink but, because it has no integrals, (o 7 is
easily computed. It is the triple-integral term ¢{') '} in (27) that is the most computationally
intensive of the ((') terms.

It was already noted, in the second paragraph of this section, that the long equations
in this section contain no new ideas. The new ideas in this paper are all in section 1 and
in the paragraph that includes equation (10).

4 Related Work

A time-domain inverse problem for heterogeneous dispersive media was solved previously
in the setting of horizontal-shear acoustic waves [12]. The essential difference between that
inversion method and the one presented here is the way in which some crucial matrix
entries are computed. In the present paper, the entries of the matrix M and the vector
[v1,v2,...,vn] in (12) are computed directly, as described in (13)-(14) and in section 3. One
of the most interesting new ideas in [12], however, is the method by which its analogous ma-
trix entries are computed; such a computational method would later be called “an implicit
scheme” [13]. The implicit scheme in [12] uses numerical experiments to determine matrix
elements in a sensible way that is validated numerically in [12]. The method in the present
paper, however, uses direct computation in place of numerical experiments. In short, (12]
has the first implicit scheme for heterogeneous dispersive {acoustic) media, and the present
paper has the first explicit scheme for heterogeneous dispersive (electromagnetic) media.
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5 Conclusion

An inverse scattering problem for heterogeneous dispersive media is defined in this paper’s

first paragraph. The statement of the problem is simplified using the new gauge ideas in
section 1. The key to understanding the layer-stripping idea at the center of this paper’s
algorithmic solution to the inverse problem is to first understand how the derivation in (10)
follows from equation (9).
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Propagat..a and Related Topics, Includiny .nversion

1. INTRODUCTION

The computation of electromagnetic pulses in dispersive media is a highly devel-
oped field. For instance, a single paper,! published in 1976, contains numerics for
the propagation of TE- and TM-polarized electromagnetic pulses that are incident
obliquely on an inhomogeneous, anomalously dispersive medium. Computational
electromagnetics has developed so extensively since 1976 that it now appears that,
given enough computer resources, one can compute the propagation of just about
any single pulse through just about any single medium. But these studies of single
pulses, even of millions ofsingle pulses, have not demonstrated that every microwave
pulse travels through water? with one-ninth the speed of light in vacuum. That fun-
damental factor-of-nine effect, which appears to have been unnoticed until now, is
established here by studying an electromagnetic wave equation and its scattering
operators, which arc; the natural places to find broadly applicable rules.that govern
propagation. We will show that the time of arrival of transmitted pulses in anoma-
lously dispersive media is related to a slow speed given by the DC phase velocity in |
each medium. This paper has several other new results, which relate to the widths
and peak amplitudes of pulses, and to quantities that resemble power density. These
new results, concerning broad classes of pulses, are validated here using standard
‘numerical methods; a new numerical method for estimating errors is also developed
and used, and some results of laboratory experiments on pulse propagation in a
muscle-equivalent material are explained. Our results will be shown to be helpful in
proposing optimum sample lengths to be used in Time Domain Spectroscopy studies
for the accurate determination of the infinite-frequency and static permittivities of
Debye-type dispersive media.>~* Also, as shown in Section 4, our results can form
the basis for a sensitivity analysis of the dependence of the medium response on
the parameters obtained from different fits to the same band-limited experimental

data.
This work was done, in part, to assist in the development of health-and-

safety regulations for electromagnetic pulses in human environments. Our goal
was to develop methods to support the regulation of basic quantities such as the
peak amplitude and the power density of incident pulses, so that it would not

be necessary to regulate every detail of a pulse’s time trace. Toward that end

IV -1



we formulated a problem in making inferences from incomplete data. We asked:
Knowing only the peak amplitude and power density of an incident pulse, what can
be said about the peak amplitude of the propagated pulse? We also asked what -
the incomplete data would imply about the values inside the dispersive medium
of the time derivative of the magnefic field H and of a different quantity that is
related to power density. Of those three quantities—peak amplitude and power
density and 0; H—it is 9, H whose size is most closely linked to the time scale of
short-risetime pulses; further, 8; H is particularly important because it would be
largely responsible for eldctromotive-force currents in any circuit-like structure that
is inside a dispersive medium. Our results in this matter of incomplete data are
quite concrete. We will show, for instance, that the peak amplitude of the electric-
field part of a propagated microwave pulse is always less than 0.150 V/m, for depths
greater than 2.00 mm in water, whenever the incident electric pulse’s peak amplitude
is less than 1.00 V/m and its power density is less than 5.29 x 10~!*Watt/m?,
regardless of the other details of the microwave pulse’s time trace. We have similar
results for power density and for §; H. The development of such general rules for
pulse propagation may put the computational basis for pulse-safety standards on as
firm a basis as for the existing standards® for continuous waves and periodic wave
trains. |

This paper’s dispersion models and time scales are motivated by laboratory
experiments. We use a one-term Dclzbye6 model that fits la.boratdry data for water?
up to 100 GHz, and our numerical tests involve pulses with or without DC-frequency
content whose time scales are characteristic of short-pulse radar. Our methods
apply to all other Debye-like media, and can be generalized for the two-term and
five-term Debye models that fit laboratory data for muscle and muscle-equivalent

materials.>~* Our methods can also be generalized for non-Debye media.
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2. PDE FORMULATION AND RESULTS

A. PDEs

The equations governing the scattering and propagation of an obliquely incident
pulse on a homogeneous dispersive half-space occupying z > 0 are the time-domain
Maxwell’s equations for the fields H,, H,, E,. This set of equations is coupled through
a polarization current (%1) to an ordinary differential equation that describes the evo-
lution of an orientational polarization (P,) mechanism of Debye type® (a relaxation
process): T%}'} + P, = Ack,, where Ac = ¢, — €, €, and €4, are respectively the zero-
and infinite-frequency relative permittivities, and 7 is the dielectric relaxation time.

This o.d.e. together with the constitutive law, D, = €,(€c0 By+ P, ), result in the model
Ace

1-iwr?

frequency-domain relative permittivity e(w) = €+ where ¢, is the permittivity
of vacuum. This model is fitted to frequency-domain experimental data for a range of
frequencies w in order to fix the various medium parameters. Typical values for water
in the microwave frequency range are £, = 80.35, € = 1.00, 7 = 8.13 psec. The
phase velocity of each frequency component in such a medium is v?***¢(w) = -Re_c\/ﬁ,
with ¢ being the speed of light in vacuum. In the subsequent analysis v?***¢(0) and
vPh%¢(o0) will arise. Finally, operational considerations fix the pulse shape, f, and
its duration, T}, ,

The electric field incident on the half-space from the air side (z < 0) is a
plane pulse E{**(z, z,t) = f(t —  sin Pine/c — 2 cOs Pinc/c) of duration T,. We assume
the pulse has been in contact with the interface since t = —co. On the interface,
z = 0, the total electric field is E,(z,0,t) = g(t — =/v) where v = ¢/sin ¢in.; the
total field is known by direct measurement of either the field on the interface or of
the scattered field in z < 0. Defining the time-like variable { = t — z/v we find
that Ey(z,z,t) = Ey(0,2,€) = Ey(2,€), Hou(z,2,t) = Hz2(0,2,¢) = H..(2,£), and
that H,(z,&) = %’“Ey(z,f). Changing coordinates (z,z,t) — (z,£) in the resulting
one-dimensional system, and eliminating H, through differentiation with respect to ¢
and P, by using- the operator ¢ + 1, we obtain a single third-order partial differential

equation for the electric field £ = I:Jy (shown in factored form),
B¢(B — co8.)(Og + cu8,)E + g(a£ BB+ )E =0, z>0,  (21)

where ¢, = ¢/(\/Eco €08 Pinc), B = l-i-Aé/(eoo cos? dine), and ¢y = ¢,//B. For ¢ine = 0,
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§ = t. The signaling problem for (2.1) is completed by giving the boundary condition
E(0,€) = g(£), and the initial data E(z,0) = E¢(z,0) = Eg(z,0) = 0. H, follows
once E is known, and H, = ;‘:fof @—é%gdf'. The following results are derived in
Subsection 3A.

Equation (2.1) describes the propagation of all possible waves of different or-
ders, and their 'corresp'onding speeds, that can be excited by an arbitrary pulse. The
coefficients exhibit an explicit dependence on the angle of incidence, and on the pa-
rameters that describe the medium. It is a strictly hyperbolic’ partial differential
equation since the prindipal part of the operator has real distinct eigenvalues (three
eigenvalues, +c, and 0), and a complete set of eigenvectors. Causality follows from
this last sentence. The characteristic contributed by the zero eigenvalue can be visu-
alized by considering that d¢ +¢,8, = J¢ when ¢, = 0. The main feature of (2.1) is the
two wave equations exhibiting distinct speeds, ¢, and ¢;. Pulse propagation is gov-
erned by these two speeds in mutually exclusive spatial regions. Disturbances mainly
described by the principal part of the operator in (2.1) will be called high-order waves,
while those described by the remaining operator will be called lower-order waves.? The
speed c;, while not a characteristic speed (it is sub-characteristic, ¢, < ¢,), is impor-
tant in the analysis and has several ramifications for experiment_s. Also, ¢; = v"”“‘"(O)
and ¢, = v?"**(c0); i.e., the main disturbances will proﬁagate with the distinct speeds
which are equal to limiting values of the phase velocity. It is worthwhile to empha-
size that experimental data indicates ¢; < cq, €.8., &1 ~ 0.1116¢c, for water in the
microwave range; the problem is stiff so the pulse travels in the half-space with either
of two speeds that are disparate.

The high-order term describes the dominant behavior for depths z < O(c,7)
m, and the effect of the lower-order term on the the high-order waves is an exponential
decay with z. The penetrating pulse propagates with speed ¢, in this shallow depth
(~ 107* m for water) which we name the “skin-depth” for pulses since it is remi-
" niscent of the well known frequency-domain concept.? From experimentally obtained
data typical of tissue 7 = 0(107!2) sec, and 8 = O(10). Thus £ is large, and we
expect the bulk of the penetrated pulse to travel with the speed ¢, since (2.1) is then
approximately E¢ — ciE., = 0. The main disturbance will be a lower-order wave.

The effect of the high-order term on the lower-order waves, which travel with speed
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¢1, is diffusive in character and important for z > O(c,7) m. The main response
diffuses around the ray z, = c;¢ on which the peak of the response is found. The
peak amplitude on the sub-characteristic ray decays as 1/4/z, or as 1/4/& (for fixed
depth). A cbnsequence of this is that the peak of the energy-like quantity E? will
decay as 1/z (1/¢).

The response will also depend crucially on the pulse duration. This parameter
appears through scaling ¢ with T}, and z with c¢T},. Now g — 9%'2, and ¢, and ¢, are
normalized by ¢. Pulses with appreciable amplitude most often have T, ~ 107%—10"'°
sec, so E_‘-I_-'z is still large® Pulses that are long with respect to the relaxation time
(T, — oo, or equivalently if 7 — 0) will propagate unattenuated in the half-space
with amplitude equal to the DC value of the frequency-domain transmission coefficient
regardless of the pulse’s DC-frequency content. The field just after the interface (no
“skin-depth” since ¢, — 0) satisfies a lossless wave equation with speed ¢,. On the
other hand, very short pulses (T, — 0, or equivalently if 7 — co) will not penetrate
far. In this case the electric field in the half-space (since now c,7 — o) sees a high
constant conductivity medium thus it satisfies a telegraphers wave equation whose

far-field is the diffusion equation.
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B. Green Functions

This subsection describes some rules of wave propagation that are derived from
time-domain Green functions. The history of these Green functions is reviewed in
Subsection 3B. We will first state some results involving upper bounds on prop-
agated peak amplitudes and power-density-type quantities. These upper bounds
are easily computed and they are independent of the detailed nature of the incident
fields. The bounds are developed for normal incidence here and for oblique incidence
in Subsection 3B. The present section concludes with a description of wave speeds
and with brief-pulse and long-pulse approximations. These rules are all illustrated
numerically using the water parameters €, = 80.35, € = 1.00, and = = 8.13 psec
from Subsection 2A; and the results are easily generalized to other Debye media
and to non-Debye media. The necessary derivations and numerical validations are
in Subsection 3B and Appendix A.

For normal incidence, let the y-polarized incident electric field be f(t —z/co)
in the air-filled half-space z < 0. In the water-filled half-space z > 0, the resulting

electric field is

E(z,t) = Ey(2,t) = exp <_:3___) f (t _ i) N /D s f ()Gl — 9).

6.15 x 10~5m co
(2.2)
The Green function Gg(z,t) is graphed in Fig. 1 for several depths z > 0. For the
boundary z = 0, Ref. 9 derives Gg(0,t) = —t~! exp[—t/(2.00 x 107*3s)] 11 {t/(2.05 x
107135)], where I; is the modified Bessel function of the first kind; the oblique-

incidence generalization is (3.12). The magnetic field Hz(z,t) = — f:/COd.sazEy (2,3) /1o

also has a Green-function representation similar to (2.2).

Many of our new results are based on (2.2) and Fig. 1. Safety standards
may be affected by this type of analysis; so, in Appendix A, we show how to
estimate the percentage error in computations, with the following results for our
computations: (1) The pointwise numerical error in Gg(0.500 mm, t) is no more
- than 1.70% of the peak value (with respect to t) of |Gg(0.500 mm, t)|; (2) The

pointwise numerical error in Gg(4.00 mm, t) is no more than 0.800% of the peak

IV -6



Ge (X 10'7sec)

0 50 100 150 200
Time (psec)

Fig. 1. The time dependence of the Green function .Gg(z,t) for water at several
depths z.
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value of |Gg(4.00 mm, t)|; and (3) For intermediate depths, the relative error in
Gg(z,t) decreases monotonically from 1.70% at z = 0.500 mm to 0.800% at z =

4.00 mm. The closed-form expression for Gg(0,t) is exact.?

We will use the following three norms:
Ih(z )l = [ atlhz,0)

Ih(er )l = ( [ oodtlh(z,t)|2)1/2 (23)

|A(z,+)|co = least upper bound of |h(z,-)|,

where, for each depth z, the least upper bound ||h(z,-)|c is evaluated with respect
to t. Then, for each depth z from 0.500 mm through 4.00 mm, '

. [ (0:202) 1£(-)leo
1E(2,*)loo £ 1f(-)leo exp (m) + min 2%3“)}(())“21, ,  (2.4)

regardless of the detailed nature of the incident electric field f(¢). The right side
of (2.4) is easily computed, given the functions Fi(z) = |Gg(z,-)]. and F3(z) =
IGE(2, )]0, Which are graphed in Fig. 2. Inequality (2.4) defines upper bounds on
the peak amplitudes of E(z,-). This inequality, and all of our other Green-function
results, are validated numerically in Subsection 3B. The upper bound on the right'
side of (2.4) is almost attained in one of the numerical validations. In that sense,
the upper bound is sharp.

We will now show how relation (2.4) could be used in a safety standard for
the peak amplitudes of internal electric fields. Suppose, for this hypothetical exam-
ple, that it has been determined that peak electric fields must be no greater than
0.200 V/m at depths greater than 1.00 mm, and no greater than 0.150 V/m at
depths greater than 3.00 mm. That hypothetical internal-field standard is trans-
lated, using (2.4) and Fig. 2, into a more easily regulated standard on incident

electric fields f(t). The easily regulated standard is
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Fig. 2. The L; norm F1(z) and the Lo, norm F;3(z) of the Green function GEg(z,-) for

water. . These norms and Eqn. (2.4) reduce the upper-

bound computations
to a calculator exercise.
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(1) Peak value of |f(t)| < 0.740 V/m or

(2) [Pea.k value of |f(t)| < 40, 000 V/m and / dt|f(t)* < 4.00 x 10_11V25/m2] or
0

(3) [Peak value of |f(t)] < 50,000 V/m and / dt|f(t)] < 2.80 x 10'“Vs/m] .
o |

| (2.5)

By reading the two gra.;)hs in Fig. 2 and using a calculator, one can use (2.4) to

show that any incident field that satisfies item (1) or item (2) or item (3) of (2.5)

is guaranteed to produce internal fields that comply with the hypothetical internal-
field standard, regardless of all other details of f(t).

Upper bounds also exist for quantities that resemble power densities.!? In

particular, for any incident field f(¢) and for each depth z from 0.500 mm through

4.00 mm, the power-density-type term?® [|E(z, »)[|2]2-= Jsdt|E(z,t)|? satisfies

| [0 < {1560k e (e +oin] SR}

 (2.6)

Subsection 3B numerically validates the inequality in (2.6), showing that the upper
bound on the right side of (2.6) is almost attained in at least one case.

We will now show how the upper bounds in (2.6) could be used in a safety

standard for an power-density-type quantity related to internal electric fields. Sup-

pose, for this hypothetical example, that it has been determined that the power-

density-type quantity focodt|E(z, t)|> must be no greater than 1.50 x 10712 V2?s/m?
at depths greater than 1.00 mm, and no greater than 1.00x 1072 V?s/m? at depths
greater than 3.00 mm. Equation (2.6) and Fig. 2 translate this hypothetical stan-

dard for internal fields into a more easily regulated standard on incident electric

fields f(t):
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(1) /wdtlf(t)lz <2.40 x 1071'V2s/m? or
| _ (2.7)
(2) [/ dt|f(t)|* < 36.0 V?s/m? and / dt|f(t)] < 3.90 x 107 Vs/m] i

Subsection 3B shows that some pulses almost attain the upper bounds in (2.6),
which was used to obtain (2.7).

The upper-bound.concepts in (2.4) and (2.6) are easily extended to mag-
netic fields and their time derivatives, and to oblique incidence. Subsection 3B has
numerical results for all of those extensions. One can see there that making the
angle of incidence more oblique will decrease the penetration into the medium of
power-density-type quantities and also peak electric and magnetic ﬁel(-is. A related
closed-form, modified-Bessel-function expression for the oblique-incidence reflection
kernel R%(t) = Gg,s(0,t) is given in (3.12).

We will now state some Green-function results concerning wave speeds.
These results are derived in Subsection 3B. For simplicity, the results are stated
for normal incidence. Qur first conclusion is that the main bulk of an electromag-
netic pulse travels through water with speed ¢g for 0.3 mm, and then slows until, for
all depths beyond 0.7 mm, the pulse travels with the constant speed ¢9/9.0. That
behavior contrasts with the wavefront speed, which is mathematically well defined
but is not always observable in a laboratory. The wavefront speed is precisely ¢
for all depths.!! Section 4 discusses various Debye models that are consistent, to
within about 10%, with the band-limited water data? used here. The large-depth
speeds (all & ¢9/9.0) for those Debye models vary by only about 10%. The shallow-
depth speed and the wavefront speed of any De'bye r.nodel, however, are both equal
to co = 1/ /Hot . The shallow-depth and wavefront speeds, consequently, change
considerably as one varies the Debye parameter eo from 1.00 t.hrough 10.0, as
described in Section 4. Therefore, a measurement of the wavefront speed or the
shallow-depth speed would determine the Debye parameter €.

We conclude with some Green-function results concerning short-pulse and

long-pulse approximations. The propagation of any finite-valued incident electric
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I;ulse f(t) is given simply by (2.2) and Fig. 1. We get additional insight by con-

sidering approximations for what we will call elemental pulses f.: An element fe(?)
is zero except on a single time interval, during which it is either strictly negative
or strictly positive. For instance, a square pulse is an element, but a one-cycle
sinusoid is not an element. Elements are important because any incident pulse f
is a sum of positive-valued elements and negative-valued elements. If the dura-
tion of an element f.(t) is much briefer than 30 psec, then the propagated pulse
element is approximately |f.(-)]1Ge(z,t) (see Fig. 1) for all depths greater than
0.7 mm. If the duration.of an element f.(t) is much longer than 50 psec, then the
propagated pulse element is approximately 0.2f [t — 9;0(3 — 1 mm)/c + 17 psec] =
0.2f. (t — 9.0z/c — 13 psec) for all depths from 1 mm through the depth at which
the duration of Gg(z,t) becomes comparable to the duration of fe(t). These ap-

proximations are derived in Subsection 3B.
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3. DERIVATIONS

A. PDEs

To extract from (2.1) the equation describing the early-time evolution (in the “skin-
layer”) of the response we set everywhere in (2.1) 8¢ ~ —c,0; except in the operator
O¢ + ¢,0, since it expresses the propagation of the high-order waves. Any other terms
in the resulting equation will describe the effect of the lower-order waves. The main

disturbance for early times is modeled by

2 _ 2
(8¢ ¥ co8;)E + g—ch:lE =0; z< T, (3.1)

subject to the boundary condition E(0,¢) = g(¢). The solution of (3.1) is

B =oe-Dew |- (2222 (Z)] . 62

We see that the response decays exponentially in a thin region of depth z ~ O(c,7),

where the speed of propagation is ¢,. Note that the decay constant is inversely
proportional to cos? ¢;,. thus normal incidence will result in the greatest amplitude
in the medium. To describe the evolution of the lower-order waves, which travel with
speed ¢y, we set in (2.1) J¢ ~ —c,0; except in the operator 8¢ + ¢,0; which expresses

the hyperbolic nature of the lower-order waves. The main disturbance is now modeled
by 2_ 2

(O + 16,)E = %i’-;iafE; Z>cr . (3.3)
The boundary condition is approximately E(z,, ¢ )} = h(£'), where z, is the depth after
which (3.1) no longer applies, ¢ is the time with origin at z,/c, (the time it takes
for the pulse to reach z, in the “skin-depth”), and h(£') represents (3.2) evaluated
at z,. Equation (3.3) is an advection-diffusion equation, and- describes the response
after a depth of O(c,7) m. The peak of the response is on the sub-characteristic
ray z, = ,£ . The solution is very easily obtained from the solution of the diffusion

equation. It is!?

. B
Be) = \sma—a

s de o (- [ S{Eeoat) gy

o
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Various techniques can be used to estimate the integral in (3.4) since 8/ is large.

Here we are interested only in the primary behavior of E as a function of depth. For

é > 1 the response is

On z, = ;¢ we find that maz{E*} ~ 1/4/z, or ~ 1/\/27 This is verified with the

numerical experiments in Section 4.
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B. Green Functions

This subsection derives our Green-function results in the order in which they are de-
scribed in Subsection 2B. Equation (2.2), for instance, is a Green-function represen-
tation. These Green functions have become a standard technique in computational
electromagnetics. They were first developed for non-dispersive media,'® and were
then used to compute fields in dispersive media.!* That dispersive-medium work
has not yet been published, owing to the death of R. Krueger, but generalizations
are available.}®~17 The Green function programs used in the present paper were
developed by the author; of Ref. 16, along the lines of Appendix A of that paper.

The L and L, norms in (2.3) have special physical significance. The L,
norm is important because (ceo/2) (][E[Iz)2 is the power density, whose mks units
are Watt/m?, of an electric pulse in free space.’® Consequently, we will. focus on the

peak-value (p = o) and power-density (p = 2) cases of the inequalities

1E(z,)lp < e™**1f()lp + 1G (2, )15 (- as (3-6)
which are obtained by applying the Young theorem?!? to (2.2), and for which a =
1.63 x 10* m~!. In particular, although (3.6) is valid whenever 1 < p, g, < o0

satisfy r~! = p™! 4+ ¢! — 1, we are most interested in the cases

| IGe(2, )11 £(-)leos
1E(z, )l < e™**|f(Weo + min| [GE(2,-)|21f(-)]2, (3.7)
IGE(z: )l £ ()l

and

ALE < {1 £ & mmia] 16 ARIFOI
15 1P < {10k + min] W2 IMO L o)

In numerical computations for water, |Gg(z,-)]|1 was observed to decrease slowly
and monotonically from 0.2019 at 0.5 mm to 0.2014 at 3.5 mm. It is as if, for those
depths in water, the advection-diffusion equation (3.3) were approximated by a heat
equation and GEg(z,t), which is positive valued for depths beyond 0.5 mm, were

analogous to a temperature distribution whose total conserved heat is proportional
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to |Ge(z, )||1 Equations (3.6)—(3.8), the almost-constant nature of |Gg(z,)|:, and
numerical Green-function computations produced the results in (2.4)-(2.7).

We now consider five numerical examples that validate the inequalities in
(2.4). We will see that the minimum upper bounds in (2.4) are almost attained for
some incident pulses. For these five examples, we choose the following hypothetical

restrictions on the incident electric pulses f(t):

17(-)le < 1.00 V/m and
17(-)2 £6.32 x 10°°8 Vsl/z/m and (3.9)

£ ()1 < 4.00 x 107 Vs/m.

Then (2.4) shows that any incident pulse f that satisfies (3.9) will _prodﬁce an
internal field whose peak amplitude satisfies

., 0.202 V/m,
1E(z,)]oo < [exp(-——;—_———) V/m] 4+ min | (6.32 x 1076 Vs!/2/m) Fi(z), | ,
6.15 x 107*m (4.00 x 10~ Vs/m) Fy(z)

(3.10)
where Fi(z) and F,(z) are graphed in Fig. 2. Each sum of the exponential in
(3.10) and a term from the “min” clause of (3.10) yields one of the three top-most,
boldface curvesin Fig. 3. Relation (3.10) guarantees that the depth-dependent peak
amplitudes of E(z,-) are less than the minimum of the three boldface upper-bound
graphs. That prediction was tested using five incident pulses f that comply with
(3.9). Those incident pulses are: (1) a 40-psec-duration square pulse with 1-V/m
amplitude; (2)- the absolute value fa(t) = |fa(t)| of the 4-cycle, 80-GHz sinusoid in
item 4 below; (3) the absolute value f3(t) = ]fs(t)| of the 1-cycle, 80-GHz sinusoid
in item 5 below; (4) a ;i-cycle 80-GHz sinusoid with 1-V/m amplitude; and (5) a
1-cycle 80-GHz sinusoid with 1-V/m amplitude. The norms of the pulses, which
are tabulated below, all satisfy (3.9).

IV -16



Peak Value (Volt/meter)

) - ) i 1 T i I i i l i i T { I i =

0.7 =

L — First Upper Bound -

=== Second Upper Bound ]

0.6 . —=—= Third Upper Bound —

- Pulse 1: 40-psec square -

B ——- Pulse 2:| 4-cycle 80-GHz | N

0.5 — —-— Pulse 3:| 1-cycle 80-GHz | =]

- ---- Pulse 4: 4-cycle 80-GHz .

C ~—— Pulse 5: 1-cycle 80-GHz N

0.3 & ~

0.2 E—

0.1

_ \ﬁp——l ~

. 0.0005 00015  0.0025 0.0035
Depth (meter)

Fig. 3. Five numerical validations of the upper-bound concept for the depth-dependent

peak amplitudes of E(z,:). The boldfacé curves are upper bounds from re-
lation (3.10).
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Table 1. Five incident pulses that satisfy the conditions in (3.9). The first iﬁcident
pulse is 1 V/m for 0 <t < 40 psec, and it is 0 for all other times. The second pulse
is the absolute value of (1V/m)sin[2nt/(8 x 10'%)] for 0 <t < 50 psec, and it is 0
for all other times.

Example Duration =~ Type I+ lloo |- 12 I
(V/m) (Vs'/i/m)  (Vs/m)
1 40-psec ' square pulse  1.00 6.32x107% 4.00x10~!
2 4 cycles |80-GHz sine] 1.00 5.00x10"% 3.18x10°
3 1 cycle |80-GHz sine] 1.00 2.50x107% 7.96x107!?

4 4 cycles 80-GHz sine 1.00 5.00x107% 3.18x10~

ot

1 cycle 80-GHzsine 1.00 2.50x107% 7.96x107!2

The peak amplitudes of the five internal fields E(z,-), corresponding to the above-
tabulated incident fields, are also graphed in Fig. 3; the curves for Examples 4
and 5 almost overlap. Those peﬁk amplitudes are all less than the (boldface) upper -
bounds described earlier. The five examples, therefore, numerically validate the
upper bound concept in (2.4). Fig. 3 also shows that the upper bounds are sharp
in the sense that the peak amplitude of one pulse (Example 1) almost attains
the minimum upper bound. That example involves a pulse with a nonzero DC-
component!9—2! fooo dtf(t). It makes intuitive sense that the presence of a DC
component in a pulse would tend to diminish the attenuatio‘n of the pulse in any
medium, as an elementary analysis?? affirms for a non-Debye medium.

Having just validated the upper-bound concept (2.4) for peaks, we now val-
idate (2.6): The two top-most, boldface curves in Fig. 4 correspond to the upper
bounds (e™**|fl2+1Gel1l7]2)? and (e™**[ fl2+|GEl2]fl1)? in (2.6), subject to the
hypothetical restriction (3.9). The other five curves represent the power-density-

type quantities [|Ez(z,-)|2]* produced by to thé five incident fields in Table 1. We
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see that the field produced by Example 1 of Table 1 almost attains the minimum
upper bound in Fig. 4. This completes our validation of the upper-bound concepts.

As explained above (2.1), oblique incidence is taken into account using a
simple, widely-known transformation of variables. Using the transformation, we
obtain numerical results for 45°-incident electric fields f[t — (z + z)/(v2c)]. In
water (z > 0) the y component of the electric field is

E(z,z,t)=FE (0,z,t - %)

— 2 t—z/(V2c)
t = e A ——— — — o b .
E(0, z,t) e~<p<4-35 - 10"5m) f <t \/ﬁc) +/(; dsf(s)Gg 450 (z,t — 3)

(3.11)
The function Gg s+ (z,t) is graphed in Fig. 5 for several depths z > 0. The numeri-
cal errors in Fig. 5 were quantitatively estimated using the method of Appendix A.
The results are: (1) For each depth z, from 0.160 mm through 2.88 mm, the er-
ror in the computed values of Gg4s:(z,t) are no more than 3.19% of the peak
value, with respect to time, of the actual values |Gg(z,t)|; and (2) The relative
errors decrease, but not necessarily monotoniéaﬂy, from 3.19% at 0.160 mm to
2.07% at 2.88 mm. At the boundary z = 0 and for all ¢ > 0, Gg5-(0,t) =
—t~ exp[—t/(1.01 x 10735)]I;[t/(1.03 x 10~13s)], where I, is the modified Bessel
function of the first kind. More generé.lly, the oblique-incidence transformation and

Ref. 9 imply, for all ¢ > 0, that

4y = -1 — 2 ¢
R°(t) = Gg,5(0,t) = ; exp[ <b+ St cos? 9> t] I1<2€°° c0520> .. (3.12)

That exact result uses the modified Bessel function of the first kind to represent
the reflections in the air-filled half-space (2 < 0) that are caused by waves that are
incident obliquely on the Debye half-space (z > 0) defined by

fo€oE(z,t), ' z2<0

D(z,t) = {amsoE(z,t) + asgf(:dse"’("’)E(z,.s), z>0"° (3.13)
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density-
type time integral' fdt|E(z,¢)[*>. The boldface upper bounds are from rela-
tion (2.6). |
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Fig. 5. The time dependence of the Green function GE,45¢(2,t) for several depths z.

This Green function is used for pulses that are incident on water at an angle
of 45°.
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In particular, the reflected field is exactly fot dsf(s)R%(t — s) for any incident field
f. Equation (3.12) was used numerically to validate the z = 0 boundary values of
the oblique-incidence Green-function computations that yielded Figs. 5, 6 and 8.
Equation (3.12) ‘was also used to validate, at z = 0, the previous percentage-error
estimates for oblique incidence. At z = 0, the estimated relative error was 1.91%;
the true relative error was 1.87%.

Applying the Young-theorem result (3.6) to the oblique-incidence represen-
tation (3.11) yields obvjous obiiquedncidence generalizations of the upper-bound
results (2.4)—(2.6); for instance, [|E(0,z,-)|2 < |f(-)]2 exp[—2z/(4.35 x 10~°m)] +

min{|Gg,ese (2, )1 1f ()2, [GE50(2, )2 f(-)l1]- The norms F3(z) = |GE 50 (2, )]z
and Fy(z) = |Gg,45¢(2, )| are graphed in Fig. 6, and |Gg 450 (z,-)]|1 was observed
to decrease slowly and monotonically from 0.149 at 0.240 mm to 0.144 at 3.00 mm.
We numerically tested these oblique-incidence inequalities using the five pulses in
Table 1. The inequalities were validated in each case, and the minimum upper
bound was almost attained in the case of a DC-component pulse (Example 1).

We will now substantiate the results in the last two paragraphs of Subsec-
tion 2B. The results rely mainly on (2.2) and Fig. 1. Note that the first term on
the right side of (2.2) represents a wave that travels with speed co and decays ex-
ponentially by a factor of 132 in each 0.300 mm interval. Therefore the convolution
‘term in (2.2) predominates for depths greater than 0.300 mm. The major features,
such as the peaks, of the convolution kernel Gg are seen in Fig. 1 to travel more
slowly than ¢o for depths greater than 0.500 mm. The peak of Gg(z,t), for in-
stance, is shown in Fig. 7 to travel with speed cq for the first 0.300 mm, and then
to slow gradually to ¢9/9.0. (The small non-monotonic feature at shallow depths
is a numerical artifact ‘caused by applying the max(-) function to a peak that is
broad.) The numerically determined fast speed co and the slow speed co/9.0 agree
quantitatively with analytical results in Subsection 2A, and also substantiate the
results in the next-to-last paragraph of Subsection 2B.

The last paragraph of Subsection 2B concerns elemental pulses f.(t), which
are zero except on a single time interval, during which they are either strictly posi-

tive or strictly negative. For example, the Green function Gg(z,t) is an elemental
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Fig. 6. The L; norm F, (2) and the L, norm F, (z) of the Green function Gg,4s¢(z,°)

The paragraph below (3.13) relates these norms to upper bounds for obliquely
incident pulses.
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pulse for all of the depths graphed in Fig. 1. The statements in Subsection 2B that
concern the propagation of elemental pulses all rely on the following approxima-

tion: If an elemental pulse fyriec(t) is much briefer than an elemental pulse fiong(t),

and if furier(t) is concentrated at the time to, then |fotdafb,;,f(t — 3) flong(s)] =

|'f(;dsﬁong(t — 3) foriet (8)] & [ forier(-)]1]flong(t — to)]. That approximation is asso-
ciated with the concept of §-sequence functions in the elementary theory of Dirac
delta functions. We also note that the exponential term in (2.2) quickly becomes
negligible because it detays by a factor of 132 across each 0.300 mm interval of
depth. These three results—the negligible exponential, the approximation of the
convolution, and the observation that Gg is an elemental pulse—together with
(2.2) and Fig. 1 yield the brief-pulse result in Subsection 2B, which has the term
| fel1Ge(2,t). The long-pulse result in that subsection uses the additional obser-
vation, below (3.8), that |GE(z,-)|: is approximately constant, and the time shift
in the long-pulse result in Subsection 2B also relies on Fig. 7 and results from the
previous paragraph.

In a final matter we would like to make it clear that we do not know what

are the medical effects of isolated pulses. We have, however, developed meth-
ods that are flexible enough that they may be useful once the medical effects are
known. Although we originally developed the upper-bound method along the lines
of peak amplitudes and power densities, following Ref. 5, the method can eas-
ily be extended to, say, the time derivative of the magnetic field Hz(z,t). To

demonstrate the extension, we computed the Green function Gy in H;(0,z2,t) =

[t e 4 I

17, and we validated the computation as described in Section 4. The Green-function

o

representation for H, yields the following analog of (3.6):

pocalOH (2, )y < €18 f(p + 1F(O)IGH(z, My + IGk (2, MrlOLf (s where
r! = pl4g ' —1and1<p,qr < co. The norms Fs(z) = |Grase (2, )]z
and Fs(z) = |Gu,as°(2,°)|oo for that inequality are graphed in Fig. 8 for the 45°-

incidence, magnetic Green function GH 4se.
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4. NUMERICAL VALIDATION AND LABORA-
TORY EXPERIMENTS

We validated the numerical results obtained with the Green’s function approach by
comparing the computed electric and magnetic fields in a Debye half-space (Section 2,
$ine = 0) to those computed with a finite difference method.??=2* Figure 9 shows
electric field time-traces computed at three spatial locations in the half-space due to
a T, = 40-psec square pulse of initial amplitude 1 V/m. We note excellent agreement
to within a width of the dine over an amplitude scale of 10 orders of magnitude. This
indicates a better than l-pari:-per-billion agreement. (The small difference increases to
two-pen-strokes’ width at the shallowest depth, but only after the field itself decreases
by a factor one thousand.) Also, the speeds of the first arrival and of the peak of the
response can be deduced from this graph. We see that the first arrival occurs with
speed ¢, = c, while the peak of the response arrives with the speed ¢; = 0.1116¢ as
predicted in Section 2. Figure 10 shows a comparison of magnetic fields, computed
with the two methods at three depths in the half-space, for a square-modulated
sinusoidal pulse of T, = 50-psec duration and carrier frequency 80 GHz. Again
similarly excellent agreement is noted.

Next, we confirm the analytical results presented in Subsection 2A by solving,
with the Green’s function method, for the impulse response, f(t —z/c) = §(t — z/c),
of the Debye half-space described there for ¢;ne = 0 ((¢ = t). To determine the two
speeds predicted by (2.1) the peak of the impulse response was obtained from the
simulation results. The temporal versus the spatial location of the peak’s occurrence
is graphed in Figure 7. The slope of the graph is the reciprocal of the speed of the peak
of the response. The relative unimportance of the characteristic z = ¢,t (equivalently,
the wayefront speed) with respect to the sub-characteristic z = ¢;¢ is immediately
evident. The value of the slope is given in Figure 7 for two ranges of depth. We see
that for depths of O(c,7) the response travels with the speed c,, and then slows down
in another O(c,7) interval. This additional interval will be much smaller or altogether .
absent for band-limited pulses. Eventually, the pulse travels with the speed ¢, for
" the remainder of the half-space. The diffusive character of the main disturbance in
the half-space is exemplified in Figure 11 where the numerically obtained maz{E?} is
compared with the analytically predicted behavior (1/4/z) as a function of depth. The
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Fig. 9. The electric ﬁe]ds, at three depths in water, that result from a normally
' incident 40-psec square pulse of 1-V/m amplitude. At the three depths

graphed, the fields are precisely 0 until 5.46 psec, 8.20 psec, and 9.60 psec
respectively.
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constant of proportionality for the 1/,/z prediction was fit to the data at the center-
point (4 mm) of the graph. We note that although the slow speed is achieved very
early on (z ~0.1 mm), it takes some time for the pulse to start diffusing (z ~ 2.5 mm).
This delay depends on the frequency content of the incident signal, and will be shorter
for band-limited pulses. From the discussion and figures it is evident that the envelope
and duration of the incident pulse control the magnitude and nature of the response
of the medium. Any high-frequency carrier component decays exponentially with
dei)th. Similar behavior was observed in numerical simulations with square pulses of
various durations. All lc;ng duration pulses were found to travel unattenuated with
amplitude T'(w = 0) x maz{E™}, and square modulated sinusoidal pulses of various
carrier frequencies and durations (1 to 10 cycles) behaved like the Green’s function
with the carrier component exponentially small.

We also checked the sensitivity of our calculations to the way' in which we
modeled the water data of Ref. 2. Reference 25 points out that many other data sets
are available for water, so we were satisfied with any model that fit the data in Ref. 2
to within 10%. In particular, we examined several Debye-model fits to the data in
Ref. 2 for frequencies that are below 100 GHz and for which the data are also said,

in the reference, to be reliable. Our experience in fitting those data is that £, can

be taken to be any number from 1.00 through 10.0, and then values for the two other -

Debye parameters, ¢, and 7, can be found that fit the data to within 10%. In that
sense, the value of €, is somewhat arbitrary; for most of our simulations we chose
£e = 1.00, which is consistent with an assumption in Ref. 2. The corresponding
Debye parameters are €., = 1.00 and ¢, = 80.35 and 7 = 8.13 x 107*?s™! in the
notation of Subsection 24, or, equivalently, a = 9.76 x 10'?s™! and b = 1.23 x 10*!s™!
in the notation of (8.13). This fit is referred to as Model 1 in Fig. 12; it is the fit that
is used in most of the numerical computations in this paper. Another model that fits
the water data to within 10% accuracy is defined by €, = 5.50 and ¢, = 78.20 and
7.=8.1x10"1%s71 or, .a.lternatively, a = 8.98 x 10'%s~! and b = 1.23 x 10'!s~!, This
second model is used ohly in Fig. 12, where it is called Model 2. The propagation of an
incident 5-cycle 8-GHz 1-V/m-amplitude square-modulated sinusoid was computed
for these Ewo models. Figure 12 shows the resulting electric field produced at a 9.75-

mm depth for both models. We compared the electric fields at 31 other representative

IV - 31




Electric Field (V/m)

0.06 T

| | | ] I i ] i |

004 _ / —— Model 1 _
0,05 _ ————— Model 2 _
i :

-0.02

-0.04

|||llll]l'll

_0-06 1 1 1 ! ‘ | 1 1 1 l !

o
o
ol
[ §
—te
o

Time (nsec)
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same incident pulse, are computed at a 9.75-mm depth for each model.

vV -32



depths, from 0 cm through 4 cm, and observed similar agreement, commensurate with
two different 10%-accuracy fits to the water data. A similar degree of agreement was
also seen for the two models in computations for the following incident fields: (1)
A 1-cycle 8-GHz square-modulated sinusoid; (2) A 1-cycle 10-GHz square-modulated
sinusoid; (3) A 50-psec square pulse; and (4) A 100-psec square pulse. These results
are numerical evidence that the computed internal fields are stable as the water model
is perturbed by about 10%.

Now we wish to provide an explanation, based on the understanding devel-
oped herein, of the obse;vations in Ref. 3 whereas no significant differences in SAR
(Specific Absorption Rate) distribution between pulsed and CW (Continuous Wave)
exposures were measured for a MEM (Muscle Equivalent Material) exhibiting two re-
laxation times. The dielectric model was composed of two Debye mech:f.nisms, which
fit experimentally determined permittivity and conductivity data for MEM at 2.07,
2.8, 5.6, and 9.3 GHz. The two relaxation times were 1, = 6.63 psec, and 7, = 83.7
psec. The material was illuminated with a train of square-modulated pulses of var-
ious durations and repetition rates. We will explain the observations in Ref. 3 for
the smallest pulse repetition rate used (200 pulses per second) for which the pulse
duration was 0.5 usec. All other results in Ref. 3 with different pulse settings are
similarly explained. For this incident signal the author of Ref. 3 used a carrier of
5.6 GHz. Thus, the pulse duration was T, = 5 x 107 sec, the quiescent interval
between pulses was T, = 5 x 102 sec, and each pulse contained 2800 cycles of car-
rier. Further, it happened that T, >> maz{r} = 73, thus the medium would not
respond in a dispersive manner, rather it exhibited an effective relative permittivity
of €1 + €2 — £, = 42.4 + 15.8 — 4.3 = 53.9 to the envelope of the pulses. With these
parameter values in mind we expect the medium to sense a CW signal of carrier 5.6
GHz, even in the pulsed case. Since the MEM has low heat diffusivity, i.e., it takes
about 40 sec for a temperature change of 0.04 "C to occur, its temperature will change
immeasurably in the time T}, between pulses. Consequently, the temperature will re-
main constant until the next pulse arrives again to be seen by the medium as part
of a CW exposure, hence the observed indistinguishability of the CW SAR versus
the pulsed SAR. As the carrier frequency is increased the CW vs. pulsed exposure
SARs should start disagreeing at smaller depths. This is related to the frequency-

—
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dependent skin depth for the carrier component which is 9.7 mm at 5.6 GHz. Al
the measurements of SAR were obtained at depths well within the skin depth. The
effects of the pulsing should be observable at depth greater than ¢,7; ~ 1.2 cm since
then the carrier component will have decayed sufficiently (it is exponentially decaying
as in the CW case) so the remaining field will be due to the square envelope and will
behave diffusively. |

The results presented in our paper also help in accurately predetermining sam-
ple thickness to be used in single and total transmission Time Domain Spectroscopy
(TDS) studies such as tHose presented in Ref. 26. In the single transmission approach
one studies the first arrival through a long sample so that the highest frequency
components will have decayed sufficiently in order not to mask the lower frequency
components which, as we showed in Section 2, are significantly slower (for water
1 ~ ¢/9). The first suggestion arising from the analysis of Section 2 (verified by
the numerical simulations) is that the sample can be as short as 2¢,7 when one is
interested in measuring the static permittivity of a Debye-like material with single
transmission TDS. On the other hand, in the total transmission approach the first
arrival time through # short sample is used to best measure the infinite-frequency
permittivity of the material under test. Therefore, a sample length shorter than c,7
should be appropriate in order to capture the time of arrival of the I'L-ighestAfrequencies
and thus determine €. (The next-to-last paragraph of Section 2 has related com-
ments.) For the test case presented in the results section of Ref. 26 [Eqn. (8) there]
it happens that €, = 17.3, €, = 3.3, 7 = 460 psec. Thus, the highest frequency
components travel with a speed ¢, = 0.5505¢, the lowest frequency components travel
with speed ¢, = 0.2673¢, and c,7 = 7.6 cm. The experimenters could have used a
slab of material of at least 15 cm to reliably measure ¢,, and a slab thickness of at
-most 7 cm to measure €., instead of using 50 cm and 2.7 cm respectively to do the
measurements. In Figure 13 we show the z-t location of the peak of the impulse
resp'onse for this medium. (The two data points in one corner of the graph are minor
numerical artifacts that are related to the similar numerical artifacts in Fig. 7.) The
graph as a whole confirms our predictions of the sample lengths with which TDS will

be most successful in measuring the permittivities.
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5. CONCLUSION

There are many generalized methods for computing the response of any single dis-
persive medium to any single incident pulse. This paper has contributed nothing
along those lines; instead, we have developed several related results that are general
in a different way. We have found, for instance, that the power density and the
peak amplitude of an incident pulse place upper bounds on the peak amplitude suf-
fered inside a dispersive medium—independent of the other details of the incident
pulse. Our Green-function results reduce the computation of such upper bounds
to little more than a ca.l.cula.tor exercise, and we have given numerical examples in
which these sharp upper bounds are almost attained. We have reported similar
upper-bound estimates for a quantity related to power density, and for the time
derivative of the magnetic field. That time derivative, 9,H, is largely responsible
for electromotive-force currents in circuit-like structures; it is especi;ally large for
short-risetime pulses. Such upper bounds could, potentially, help in the regulatiog
of electromagnetic interference or damage produced in dispersive media.

Although our methods apply to dispersive media generally, we have used
a Debye model for microwave-pulse propagation in water as a specific numerical
example. For that water example, we reported a factor-of-nine effect in the wave "
speeds that seems to have been unnoticed until now, and we expla..ined this large
effect analytically using PDEs. The PDE analysis also yielded simple short-pulse
and long-pulse approximations, as did an analysis of the numerical Green functions
involved in the upper-bound concepts described earlier. We studied rates of decay
in Subsection 2A, and approximations for detailed time traces are given in Subsec-
tion 2B and Eqns. (3.2) and (3.4). Section 4 uses that work to explain the results

of some laboratory experiments, and to offer suggestions for future experiments.
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APPENDIX A: ERROR ESTIMATES

This appendix develops an easily used method for estimating the percentage error
in grid-dependent computations. The estimates are validated numerically in some
cases for which exact solutions are known, and the estimates are also used in cases
for which exact solutions are not known. These estimates use only one of the many
definitions of relative error for functions of two variables, but the estimates can easily
be adapted to other measures of relative error and to functions of more than two
variables. We were motivated to estimate percentage errors because quantitative
estimates of uncertainty ;ould help in setting safety standards or in the use of other
computations for which measures of numerical uncertainty are vital.

The error estimates in this paper are empirical. The estimates are obtained
by computing with several different grid sizes, noticing a pattern in the relative
errors of the different computer runs, and using that inferred patterr; to sum the
series on the right side of the inequality |fc = feloo < [fe = filoo +1f1 — foleo +1f2 —
faloo + -++. The concepts of rate and order of convergence are not used in these
empirical estimates. The logic behind the estimates is slightly intricate, but the
resulting method uses only least upper bounds and geometric means and geometric
series, which are extraordinarily simple concepts.

We will estimate relative errors for functions of two variables. The error in

a computed solution f.(z,t) relative to the exact solution f.(z,t) can be defined as

V() = (N

Ercl[fc, fe] = “fe(z, )“m (Al)

The relative error (Al) is a function of the depth z. For instance, if the relative
error is known to be less than 1% over a range of depths z, then, for those depths,
the exact solution f.(z,t) can differ from the computed solution f.(z,t) by no more
than 1% of the peak value (with respect to t) of |fe(z,t)|. The just-mentioned peak
value of |fe(z,-)| is unknown inall practical cases in which the exact solution f. is
unknown; however, in the present hypothetical case of 1% relative error, the peak
value of the unknown quantity | fe(z, )| can differ by no more than 1% from the peak
value of the known quantity |f.(z,-)|. A brief derivation involving a geometric series

then shows that, in the case of 1% relative error, the graph of the exact solution
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f(z,t) is guaranteed to fall between the graph of fc(z,t) + 1.01%]f.(z,*)]cc and
the graph of fo(z,t) —1.01%| f(2,)]eo. The quantities £1.01%| f.(z, )0 are called

error bars.

We will now go step by step through the error estimates illustrated in Fig. 14.
Those estimates are for Green-function computations of waves normally incident on
water. The computations were done for five different grids, and the results are
called fi(z,t), f2(z,t),..., fs(z,t) in order of the increasing fineness of the grids.
Because of computer limitations, the finer-grid computations were done for shal-

lower depths than were the coarser-grid computations. For zero depth, the light

circles on the z = 0 axis of Fig. 14 represent [f1(0,:) — £2(0,)|oo/1/5(0, )] oo,

1£2(0,7) = £3(0, Moo/ 1£5(0, Mooy 1£3(0,7) = fa(05)eo/Nfs (0, Mooy 2nd [£a(0,-) —
f5(0,)leo/15(0, )| co, running from top to bottom along the vertical.axis. For in-
stance, the error in f,(0,¢) relative to the most finely computed result f5(0,¢) is
0.157%. The even spacing of the four light circles along the logarithmic, vertical
axis of Fig. 14 suggests that the four relative errors are in geometric progression;
in fact, the ratio of the second-largest relative error to the largest relative error
is 0.368, the ratio of the next two smaller relative errors is 0.284, the ratio of the
two smallest relative errors is 0.268, and the geometric mean of the three previous

numbers is 0.304. For those reasons we assume

[fnr2(0,) = Fara(0 Moo (0 agqyn B2(05) = £2(0, )leo
Foe O T hea.. 0 W)

even for hypothetical results, such as fr00, which would come from computations
involving a much-finer grid than was used for the actual computation of fs. We
also assume that the exact result fo(z,t) is the n— co limit of fu(z,t). The triangle
inequality for norms then implies | fi = feleo < [f1 = f2loo ] f2 = faloo +1f3 = faloo +
-++. We use (A2) in the right side of the previous inequality to get a geometric series,

which sums to

1£00,) = £e(0, )l < 1 1A1(0,) = f2(0,)leo
1£5(0, )l 1—0.304 1750, )l oo

=8.08%  (43)
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at z = 0. That 8.08% estimated relative error is plotted as the top-most heavy circle
on the vertical axis of Fig. 14. The analysis was repeated for the relative errors of

other computations f;, yielding

1£:0,) = £ (0 Moo 1 4y 0) = Fira (0, )leo
17500, Mo | 150w

(44)

for 1 = 1,2,3,4. Those estimated relative errors are also plotted as heavy circles on
the vertical axis of Fig..14.

Reference 9 has an exact, closed form, modified-Bessel-function expression
of the zero-depth Green function for a half-space of Debye medium. That exact
solution f. was used to compute the true relative errors E..[f;, fe] at z = 0. Those
true relative errors are plotted as the bold Xs on Fig. 14. The true relative errors
(bold Xs) validate the error estimates (bold circles) because the two sets of errors
match closely; for instance, the error estimate (A4) for f3(0,-) was that there would
be 0.844% error relétive to f., and the actual error in f3(0,-) relative to f. was
0.797%. Our percentage-error method involving geometric means and geometric
series is thereby validated.

The relative errors | fi(z,+)— fi+1(2,)loo/lfs(2,:)]|cc Were then computed
at the depths z = 0.480 mm, 1.04 mm, 1.52 mm, and 2.00 mm, for z = 1,2, 3,4.
Those results are plotted as some of the light circles to the right of the vertical
axis in Fig. 14. Error estimates for f3(z,:) were computed using the geometric-
series technique in (A2)-(A4), with the results plotted as several bold asterisks on
Fig. 14. The ratios of relative errors and the geometric means of the ratios were
computed separately for each depth. In particular, the geometric means for the four
depths mentioned in this paragraph are 0.302, 0.328, 0.315, and 0.333 for 0.480 mm
through 2.00 mm, consecutively. We will now explain how the relative errors for
depths beyond 2.00 mm were computed.

The finest-discretization run was not; computed beyond 2.00 mm for reasons
related to computer resources. Thus, only fi, f2, f3, and fy; were analyzed for the
depths from 2.48 mm through 4.00 mm. These analyses were done as described in
the previous paragraph, and the geometric means were also computed separately

for each depth. Similarly, the runs f, f2, and f; were analyzed for depths from
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5.04 mm through 7.04 mm. In these computations, and in all other computations
described in this appendix, the Lo, norms were computed using 90 evenly spaced
time points.

The final result in Fig. 14 is symbolized by the bold asterisks there. The
result is that f3(z,t) has errors relative to f. that are expected to fall monotonically
from about 1.70% at z =0.480 mm to about 0.799% at z =4.00 mm. The error in
£3(0,t) relative to f.(0,t) is actually 0.797%. Figure 14 shows that the relative
errors are non-monotonig from 0.00 mm through 0.500 mm; therefore, we make no

further inferences about the relative errors in that first half-millimeter.
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